[article]
Titre : |
The peak overpressure field resulting from shocks emerging from circular shock tubes |
Type de document : |
texte imprimé |
Auteurs : |
A. J. Newman, Auteur ; J. C. Mollendorf, Auteur |
Année de publication : |
2010 |
Article en page(s) : |
07 p. |
Note générale : |
fluids engineering |
Langues : |
Anglais (eng) |
Mots-clés : |
measurement shock (mechanics) equations shapes tubes |
Index. décimale : |
620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux |
Résumé : |
A simple semi-empirical model for predicting the peak overpressure field that results when a shock emerges from a circular shock tube is presented and validated. By assuming that the shape of the expanding shock remains geometrically similar after an initial development period, an equation that describes the peak overpressure field in the horizontal plane containing the shock tube’s centerline was developed. The accuracy of this equation was evaluated experimentally by collecting peak overpressure field measurements along radials from the shock tube exit at 0 deg, 45 deg, and 90 deg over a range of shock Mach numbers from 1.15 to 1.45. It was found that the equation became more accurate at higher Mach numbers with percent differences between experimental measurements and theoretical predictions ranging from 1.1% to 3.6% over the range of Mach numbers considered. (1) Shocks do propagate in a geometrically similar manner after some initial development length over the range of Mach numbers considered here. (2) The model developed here gives reasonable predictions for the overpressure field from a shock emerging from a circular shock tube. (3) Shocks are expected to be completely symmetric with respect to the shock tube’s centerline, and hence, a three dimensional overpressure field may be predicted by the model developed here. (4) While there is a range of polar angle at which the shock shape may be described as being spherical with respect to the shock tube’s exit, this range does not encompass the entirety of the half space in front of the shock tube, and the model developed here is needed to accurately describe the entire peak overpressure field. |
DEWEY : |
620.1 |
ISSN : |
0098-2202 |
En ligne : |
http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] |
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 8 (Août 2010) . - 07 p.
[article] The peak overpressure field resulting from shocks emerging from circular shock tubes [texte imprimé] / A. J. Newman, Auteur ; J. C. Mollendorf, Auteur . - 2010 . - 07 p. fluids engineering Langues : Anglais ( eng) in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 8 (Août 2010) . - 07 p.
Mots-clés : |
measurement shock (mechanics) equations shapes tubes |
Index. décimale : |
620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux |
Résumé : |
A simple semi-empirical model for predicting the peak overpressure field that results when a shock emerges from a circular shock tube is presented and validated. By assuming that the shape of the expanding shock remains geometrically similar after an initial development period, an equation that describes the peak overpressure field in the horizontal plane containing the shock tube’s centerline was developed. The accuracy of this equation was evaluated experimentally by collecting peak overpressure field measurements along radials from the shock tube exit at 0 deg, 45 deg, and 90 deg over a range of shock Mach numbers from 1.15 to 1.45. It was found that the equation became more accurate at higher Mach numbers with percent differences between experimental measurements and theoretical predictions ranging from 1.1% to 3.6% over the range of Mach numbers considered. (1) Shocks do propagate in a geometrically similar manner after some initial development length over the range of Mach numbers considered here. (2) The model developed here gives reasonable predictions for the overpressure field from a shock emerging from a circular shock tube. (3) Shocks are expected to be completely symmetric with respect to the shock tube’s centerline, and hence, a three dimensional overpressure field may be predicted by the model developed here. (4) While there is a range of polar angle at which the shock shape may be described as being spherical with respect to the shock tube’s exit, this range does not encompass the entirety of the half space in front of the shock tube, and the model developed here is needed to accurately describe the entire peak overpressure field. |
DEWEY : |
620.1 |
ISSN : |
0098-2202 |
En ligne : |
http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] |
|