[article]
Titre : |
CFD evaluation of solid particles erosion in curved ducts |
Type de document : |
texte imprimé |
Auteurs : |
Samy M. El-Behery, Auteur ; Mofreh H. Hamed, Auteur ; K. A. Ibrahim, Auteur |
Année de publication : |
2010 |
Article en page(s) : |
10 p. |
Note générale : |
fluids engineering |
Langues : |
Anglais (eng) |
Mots-clés : |
flow (dynamics) particulate matter exterior walls computational fluid dynamics erosion modeling ducts equations |
Résumé : |
This paper investigates numerically the erosion phenomenon that occurs in 90 deg and 180 deg curved ducts. The erosion prediction model comprises from three stages: flow modeling, particle tracking, and erosion calculations. The proposed three stages of the present model are tested and validated. Comparisons between predicted penetration rate and published experimental data show a good agreement. The effects of bend orientation, inlet gas velocity, bend dimensions, loading ratio, and particle size on the penetration rate are also simulated. In addition, based on many predictions of erosion rate results, new CFD based correlations are developed for the maximum penetration rate and its location. These correlations can be used to predict the bend lifetime for particular operating conditions. |
DEWEY : |
620.1 |
ISSN : |
0098-2202 |
En ligne : |
http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27423 [...] |
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 7 (Juillet 2010) . - 10 p.
[article] CFD evaluation of solid particles erosion in curved ducts [texte imprimé] / Samy M. El-Behery, Auteur ; Mofreh H. Hamed, Auteur ; K. A. Ibrahim, Auteur . - 2010 . - 10 p. fluids engineering Langues : Anglais ( eng) in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 7 (Juillet 2010) . - 10 p.
Mots-clés : |
flow (dynamics) particulate matter exterior walls computational fluid dynamics erosion modeling ducts equations |
Résumé : |
This paper investigates numerically the erosion phenomenon that occurs in 90 deg and 180 deg curved ducts. The erosion prediction model comprises from three stages: flow modeling, particle tracking, and erosion calculations. The proposed three stages of the present model are tested and validated. Comparisons between predicted penetration rate and published experimental data show a good agreement. The effects of bend orientation, inlet gas velocity, bend dimensions, loading ratio, and particle size on the penetration rate are also simulated. In addition, based on many predictions of erosion rate results, new CFD based correlations are developed for the maximum penetration rate and its location. These correlations can be used to predict the bend lifetime for particular operating conditions. |
DEWEY : |
620.1 |
ISSN : |
0098-2202 |
En ligne : |
http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27423 [...] |
|