Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Vladimir A. Hammoudeh
Documents disponibles écrits par cet auteur
Affiner la rechercheEffect of second order velocity-slip/temperature-jump on basic gaseous fluctuating micro flows / M. A. Hamdan in Transactions of the ASME . Journal of fluids engineering, Vol. 132 N° 7 (Juillet 2010)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 7 (Juillet 2010) . - 06 p.
Titre : Effect of second order velocity-slip/temperature-jump on basic gaseous fluctuating micro flows Type de document : texte imprimé Auteurs : M. A. Hamdan, Auteur ; M. A. Al-Nimr, Auteur ; Vladimir A. Hammoudeh, Auteur Année de publication : 2010 Article en page(s) : 06 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : force; flow (dynamics); temperature; natural convection; boundary-value problems; frequency; pressure gradient Résumé : In this work, the effect of the second-order term to the velocity-slip/temperature-jump boundary conditions on the solution of four cases in which the driving force is fluctuating harmonically was studied. The study aims to establish criteria that secure the use of the first order velocity-slip/temperature-jump model boundary conditions instead of the second-order ones. The four cases studied were the transient Couette flow, the pulsating Poiseuille flow, Stoke’s second problem, and the transient natural convection flow. It was found that at any given Kn number, increasing the driving force frequency, increases the difference between the first and second-order models. Assuming that a difference between the two models of over 5% is significant enough to justify the use of the more complex second-order model, the critical frequencies for the four different cases were found. For the cases for which the flow is induced by the fluctuating wall as in cases 1 and 3, we found that critical frequency at Kn=0.1 to be ω=8. For the cases of flow driven by a fluctuating pressure gradient as in case 2, this frequency was found to be ω=1, at the same Kn number. In case 4, for the temperature-jump model, the critical frequency was found to be ω=7 and for the velocity-slip model the critical frequency at the same Kn number was found to be ω=1.35. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27423 [...] [article] Effect of second order velocity-slip/temperature-jump on basic gaseous fluctuating micro flows [texte imprimé] / M. A. Hamdan, Auteur ; M. A. Al-Nimr, Auteur ; Vladimir A. Hammoudeh, Auteur . - 2010 . - 06 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 7 (Juillet 2010) . - 06 p.
Mots-clés : force; flow (dynamics); temperature; natural convection; boundary-value problems; frequency; pressure gradient Résumé : In this work, the effect of the second-order term to the velocity-slip/temperature-jump boundary conditions on the solution of four cases in which the driving force is fluctuating harmonically was studied. The study aims to establish criteria that secure the use of the first order velocity-slip/temperature-jump model boundary conditions instead of the second-order ones. The four cases studied were the transient Couette flow, the pulsating Poiseuille flow, Stoke’s second problem, and the transient natural convection flow. It was found that at any given Kn number, increasing the driving force frequency, increases the difference between the first and second-order models. Assuming that a difference between the two models of over 5% is significant enough to justify the use of the more complex second-order model, the critical frequencies for the four different cases were found. For the cases for which the flow is induced by the fluctuating wall as in cases 1 and 3, we found that critical frequency at Kn=0.1 to be ω=8. For the cases of flow driven by a fluctuating pressure gradient as in case 2, this frequency was found to be ω=1, at the same Kn number. In case 4, for the temperature-jump model, the critical frequency was found to be ω=7 and for the velocity-slip model the critical frequency at the same Kn number was found to be ω=1.35. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27423 [...]