[article]
Titre : |
Biomathématiques, du discret au continu, au service de la modélisation du vivant |
Type de document : |
texte imprimé |
Auteurs : |
Jacques Demongeot, Auteur |
Année de publication : |
2010 |
Article en page(s) : |
1-22 p. |
Note générale : |
Mathématiques pour l'ingénieur |
Langues : |
Français (fre) |
Mots-clés : |
Biomathématiques--ContinuesModélisation du vivantMéthodologies spécifiques |
Résumé : |
Les biomathématiques rassemblent les techniques de modélisation mathématique et de simulation de phénomènes dynamiques observés dans la nature, déclinées dans le domaine du vivant. Ces techniques de modélisation peuvent se décomposer en deux grandes familles :
les biomathématiques discrètes, que nous illustrerons par la théorie des automates cellulaires (déterministes ou aléatoires) et ses applications à la modélisation des réseaux de régulation génétique et à celle des maladies contagieuses ;
les biomathématiques continues, illustrées par la théorie des équations aux dérivées partielles appliquées au développement embryologique et à la modélisation de la diffusion des maladies infectieuses.
Ces deux familles de techniques de modélisation ont en commun un domaine assez récemment exploré, celui des systèmes hybrides, ayant une partie discrète et une partie continue.
Malgré la disparité apparente des domaines d’application, le spectre des sciences du vivant étant très large, la constance dans le choix d’outils classiques, à travers les articles récents dans les journaux internationaux de référence du domaine, conduit à penser que l’originalité des biomathématiques réside davantage dans la complexité des systèmes auxquelles elles s’appliquent, à la limite des possibilités de calcul en termes de dimension des systèmes étudiés et de nombre d’interactions entre leurs composants (ce qui oblige à implémenter des méthodes de calcul optimisant les temps d’exécution), que dans la création de nouveaux outils théoriques. L’introduction de méthodes multi-échelles en temps et en espace, de systèmes hybrides et d’approches énergétiques de type décomposition de Hodge (potentielle-hamiltonienne) constitue une tentative innovante dans la recherche de méthodologies spécifiques, sans représenter en soi une rupture du paradigme de la modélisation classique, qui introduirait des méthodes mathématiques totalement nouvelles, exigées par les spécificités du vivant. Une telle évolution n’est toutefois pas exclue dans l’avenir et nous en tracerons quelques perspectives. |
Note de contenu : |
Bibliogr.Doc. AF1520 |
REFERENCE : |
AF 1 520 |
ISSN : |
1776-0860 |
Date : |
Octobre 2012 |
En ligne : |
http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] |
in Techniques de l'ingénieur AFM > Vol. AFM4 (Trimestriel) . - 1-22 p.
[article] Biomathématiques, du discret au continu, au service de la modélisation du vivant [texte imprimé] / Jacques Demongeot, Auteur . - 2010 . - 1-22 p. Mathématiques pour l'ingénieur Langues : Français ( fre) in Techniques de l'ingénieur AFM > Vol. AFM4 (Trimestriel) . - 1-22 p.
Mots-clés : |
Biomathématiques--ContinuesModélisation du vivantMéthodologies spécifiques |
Résumé : |
Les biomathématiques rassemblent les techniques de modélisation mathématique et de simulation de phénomènes dynamiques observés dans la nature, déclinées dans le domaine du vivant. Ces techniques de modélisation peuvent se décomposer en deux grandes familles :
les biomathématiques discrètes, que nous illustrerons par la théorie des automates cellulaires (déterministes ou aléatoires) et ses applications à la modélisation des réseaux de régulation génétique et à celle des maladies contagieuses ;
les biomathématiques continues, illustrées par la théorie des équations aux dérivées partielles appliquées au développement embryologique et à la modélisation de la diffusion des maladies infectieuses.
Ces deux familles de techniques de modélisation ont en commun un domaine assez récemment exploré, celui des systèmes hybrides, ayant une partie discrète et une partie continue.
Malgré la disparité apparente des domaines d’application, le spectre des sciences du vivant étant très large, la constance dans le choix d’outils classiques, à travers les articles récents dans les journaux internationaux de référence du domaine, conduit à penser que l’originalité des biomathématiques réside davantage dans la complexité des systèmes auxquelles elles s’appliquent, à la limite des possibilités de calcul en termes de dimension des systèmes étudiés et de nombre d’interactions entre leurs composants (ce qui oblige à implémenter des méthodes de calcul optimisant les temps d’exécution), que dans la création de nouveaux outils théoriques. L’introduction de méthodes multi-échelles en temps et en espace, de systèmes hybrides et d’approches énergétiques de type décomposition de Hodge (potentielle-hamiltonienne) constitue une tentative innovante dans la recherche de méthodologies spécifiques, sans représenter en soi une rupture du paradigme de la modélisation classique, qui introduirait des méthodes mathématiques totalement nouvelles, exigées par les spécificités du vivant. Une telle évolution n’est toutefois pas exclue dans l’avenir et nous en tracerons quelques perspectives. |
Note de contenu : |
Bibliogr.Doc. AF1520 |
REFERENCE : |
AF 1 520 |
ISSN : |
1776-0860 |
Date : |
Octobre 2012 |
En ligne : |
http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] |
|