Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Chris Baker
Documents disponibles écrits par cet auteur
Affiner la rechercheLES of the slipstream of a rotating train / Hassan Hemida in Transactions of the ASME . Journal of fluids engineering, Vol. 132 N° 5 (Mai 2010)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 5 (Mai 2010) . - 09 p.
Titre : LES of the slipstream of a rotating train Type de document : texte imprimé Auteurs : Hassan Hemida, Auteur ; Nahia Gil, Auteur ; Chris Baker, Auteur Année de publication : 2010 Article en page(s) : 09 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : pressure; flow (dynamics); boundary layers; trains; slipstream Résumé : The slipstream of a high-speed train was investigated using large-eddy simulation (LES). The subgrid stresses were modeled using the standard Smagorinsky model. The train model consisted of a four-coach of a 1/25 scale of the ICE2 train. The model was attached to a 3.61 m diameter rotating rig. The LES was made at two Reynolds numbers of 77,000 and 94,000 based on the height of the train and its speed. Three different computational meshes were used in the simulations: course, medium and fine. The coarse, medium, and fine meshes consisted of 6×106, 10×106, and 15×106 nodes, respectively. The results of the fine mesh are in fairly agreement with the experimental data. Different flow regions were obtained using the LES: upstream region, nose region, boundary layer region, intercarriage gap region, tail region, and wake region. Localized velocity peak was obtained near the nose of the train. The maximum and minimum pressure values are also noticed near to the nose tip. Coherent structures were born at the nose and roof of the train. These structures were swept by the radial component of the velocity toward the outer side of the train. These structures extended for a long distance behind the train in the far wake flow. The intercarriage gaps and the underbody complexities, in the form of supporting cylinders, were shown to have large influences on the slipstream velocity. The results showed that the slipstream velocity is linearly proportional to the speed of the train in the range of our moderate Reynolds numbers. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27418 [...] [article] LES of the slipstream of a rotating train [texte imprimé] / Hassan Hemida, Auteur ; Nahia Gil, Auteur ; Chris Baker, Auteur . - 2010 . - 09 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 5 (Mai 2010) . - 09 p.
Mots-clés : pressure; flow (dynamics); boundary layers; trains; slipstream Résumé : The slipstream of a high-speed train was investigated using large-eddy simulation (LES). The subgrid stresses were modeled using the standard Smagorinsky model. The train model consisted of a four-coach of a 1/25 scale of the ICE2 train. The model was attached to a 3.61 m diameter rotating rig. The LES was made at two Reynolds numbers of 77,000 and 94,000 based on the height of the train and its speed. Three different computational meshes were used in the simulations: course, medium and fine. The coarse, medium, and fine meshes consisted of 6×106, 10×106, and 15×106 nodes, respectively. The results of the fine mesh are in fairly agreement with the experimental data. Different flow regions were obtained using the LES: upstream region, nose region, boundary layer region, intercarriage gap region, tail region, and wake region. Localized velocity peak was obtained near the nose of the train. The maximum and minimum pressure values are also noticed near to the nose tip. Coherent structures were born at the nose and roof of the train. These structures were swept by the radial component of the velocity toward the outer side of the train. These structures extended for a long distance behind the train in the far wake flow. The intercarriage gaps and the underbody complexities, in the form of supporting cylinders, were shown to have large influences on the slipstream velocity. The results showed that the slipstream velocity is linearly proportional to the speed of the train in the range of our moderate Reynolds numbers. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27418 [...]