Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Xueyang Feng
Documents disponibles écrits par cet auteur
Affiner la rechercheKinetic modeling and isotopic investigation of isobutanol fermentation by two engineered escherichia coli strains / Yi Xiao in Industrial & engineering chemistry research, Vol. 51 N° 49 (Décembre 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 49 (Décembre 2012) . - pp 15855–15863
Titre : Kinetic modeling and isotopic investigation of isobutanol fermentation by two engineered escherichia coli strains Type de document : texte imprimé Auteurs : Yi Xiao, Auteur ; Xueyang Feng, Auteur ; Arul M. Varman, Auteur Année de publication : 2013 Article en page(s) : pp 15855–15863 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Kinetic Isotopic Résumé : We constructed an Escherichia coli BL21 strain with the Ehrlich pathway (the low-performance strain for isobutanol production). We also obtained a high isobutanol-producing E. coli strain JCL260 from the James Liao group (University of California). To compare the fermentation performances of the two engineered strains, we employed a general Monod-based model coupled with mixed-growth-associated isobutanol formation kinetics to simulate glucose consumption, biomass growth, and product secretion/loss under different cultivation conditions. On the basis of both kinetic data and additional 13C-isotopic investigation, we found that the low-performance strain demonstrated robust biomass growth in the minimal growth medium (20 g/L glucose), achieving isobutanol production (up to 0.95 g/L). It utilized significant amounts of yeast extract to synthesize isobutanol when it grew in the rich medium. The rich medium also enhanced waste product secretion, and thus reduced the glucose-based isobutanol yield. In contrast, JCL260 had poor biomass growth in the minimal medium due to an inflated Monod constant (KS), while the rich medium greatly promoted both biomass growth and isobutanol productivity (60% of the theoretical isobutanol yield). With the optimized keto-acid pathway, JCL260 synthesized isobutanol mostly from glucose even in the presence of sufficient yeast extract. This study not only provided a kinetic model for scaled-up isobutanol fermentation but also offered metabolic insights into the performance trade-off between the two engineered E. coli strains. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie202936t [article] Kinetic modeling and isotopic investigation of isobutanol fermentation by two engineered escherichia coli strains [texte imprimé] / Yi Xiao, Auteur ; Xueyang Feng, Auteur ; Arul M. Varman, Auteur . - 2013 . - pp 15855–15863.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 49 (Décembre 2012) . - pp 15855–15863
Mots-clés : Kinetic Isotopic Résumé : We constructed an Escherichia coli BL21 strain with the Ehrlich pathway (the low-performance strain for isobutanol production). We also obtained a high isobutanol-producing E. coli strain JCL260 from the James Liao group (University of California). To compare the fermentation performances of the two engineered strains, we employed a general Monod-based model coupled with mixed-growth-associated isobutanol formation kinetics to simulate glucose consumption, biomass growth, and product secretion/loss under different cultivation conditions. On the basis of both kinetic data and additional 13C-isotopic investigation, we found that the low-performance strain demonstrated robust biomass growth in the minimal growth medium (20 g/L glucose), achieving isobutanol production (up to 0.95 g/L). It utilized significant amounts of yeast extract to synthesize isobutanol when it grew in the rich medium. The rich medium also enhanced waste product secretion, and thus reduced the glucose-based isobutanol yield. In contrast, JCL260 had poor biomass growth in the minimal medium due to an inflated Monod constant (KS), while the rich medium greatly promoted both biomass growth and isobutanol productivity (60% of the theoretical isobutanol yield). With the optimized keto-acid pathway, JCL260 synthesized isobutanol mostly from glucose even in the presence of sufficient yeast extract. This study not only provided a kinetic model for scaled-up isobutanol fermentation but also offered metabolic insights into the performance trade-off between the two engineered E. coli strains. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie202936t