Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Fan Sun
Documents disponibles écrits par cet auteur
Affiner la rechercheNovel hybrid evolutionary algorithm for dynamic optimization problems and its application in an ethylene oxide hydration reactor / Feng Qian in Industrial & engineering chemistry research, Vol. 51 N° 49 (Décembre 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 49 (Décembre 2012) . - pp. 15974-15985
Titre : Novel hybrid evolutionary algorithm for dynamic optimization problems and its application in an ethylene oxide hydration reactor Type de document : texte imprimé Auteurs : Feng Qian, Auteur ; Fan Sun, Auteur ; Wenli Du, Auteur Année de publication : 2013 Article en page(s) : pp. 15974-15985 Note générale : Industrial chemsitry Langues : Anglais (eng) Mots-clés : Reactor Hydration Optimization Algorithm Résumé : A novel hybrid evolutionary algorithm (HEA) that combines the genetic algorithm (GA) and particle swarm optimization (PSO) is proposed to solve the dynamic optimization problems of chemical processes using numerical methods. Based on the characteristics of dynamic optimization problems, the concept of "search region reduction" is integrated into the HEA to improve the convergence rate. A control vector parametrization (CVP) method based on the HEA is also employed to improve the accuracy of the results. The dynamic optimization problem with state variable constraints is an important research area in process system engineering and is difficult to solve. Thus, the present work also proposes a novel method embedding information about infeasible chromosomes into the evaluation function to solve dynamic optimization problems with or without state variable constraints. The results of several case studies demonstrate the feasibility and efficiency of the proposed methods. Finally, the proposed methods are used to solve the temperature distribution problem in an ethylene oxide hydration reactor. Moreover, the proposed algorithm can be regarded as a useful optimization tool, especially when gradient information is unavailable. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26732123 [article] Novel hybrid evolutionary algorithm for dynamic optimization problems and its application in an ethylene oxide hydration reactor [texte imprimé] / Feng Qian, Auteur ; Fan Sun, Auteur ; Wenli Du, Auteur . - 2013 . - pp. 15974-15985.
Industrial chemsitry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 49 (Décembre 2012) . - pp. 15974-15985
Mots-clés : Reactor Hydration Optimization Algorithm Résumé : A novel hybrid evolutionary algorithm (HEA) that combines the genetic algorithm (GA) and particle swarm optimization (PSO) is proposed to solve the dynamic optimization problems of chemical processes using numerical methods. Based on the characteristics of dynamic optimization problems, the concept of "search region reduction" is integrated into the HEA to improve the convergence rate. A control vector parametrization (CVP) method based on the HEA is also employed to improve the accuracy of the results. The dynamic optimization problem with state variable constraints is an important research area in process system engineering and is difficult to solve. Thus, the present work also proposes a novel method embedding information about infeasible chromosomes into the evaluation function to solve dynamic optimization problems with or without state variable constraints. The results of several case studies demonstrate the feasibility and efficiency of the proposed methods. Finally, the proposed methods are used to solve the temperature distribution problem in an ethylene oxide hydration reactor. Moreover, the proposed algorithm can be regarded as a useful optimization tool, especially when gradient information is unavailable. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26732123