Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Maria José Nieves-Remacha
Documents disponibles écrits par cet auteur
Affiner la rechercheHydrodynamics of liquid–liquid dispersion in an advanced-flow reactor / Maria José Nieves-Remacha in Industrial & engineering chemistry research, Vol. 51 N° 50 (Décembre 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 50 (Décembre 2012) . - pp 16251–16262
Titre : Hydrodynamics of liquid–liquid dispersion in an advanced-flow reactor Type de document : texte imprimé Auteurs : Maria José Nieves-Remacha, Auteur ; Amol A. Kulkarni, Auteur ; Klavs F. Jensen, Auteur Année de publication : 2013 Article en page(s) : pp 16251–16262 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Hydrodynamics Mass transfer Résumé : Hydrodynamics and mass transfer of immiscible liquid–liquid flows are explored in an Advanced-Flow Reactor (AFR). These systems are emerging as one of the major commercial systems for small scale continuous flow chemistry, and characterization of the transport phenomena is critical for reaction implementation. With hexane/water as a model system, we use flow visualization techniques to determine drop size distribution, hexane holdup, and specific interfacial areas for a phase flow rate range of 10–80 mL/min. The complex geometry of the AFR with its continuously changing cross section along the flow path and strategically placed obstacles creates pressure changes that cause drop breakup and enhance mass transfer. Observations show that a wide range of average drop size (0.33–1.3 mm) can be achieved in the AFR depending upon the inlet flow rates and inlet composition. Pressure drop measurements are performed to estimate the power consumption and are used to compare the efficiency of AFR with conventional liquid–liquid contactors. The analysis shows that, similar to microreactors, the AFR can provide specific interfacial areas (1000–10 000 m–1) and overall mass transfer coefficients (1.9–41 s–1) a few orders of magnitude larger than conventional stirred tank reactors and also the static mixers. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie301821k [article] Hydrodynamics of liquid–liquid dispersion in an advanced-flow reactor [texte imprimé] / Maria José Nieves-Remacha, Auteur ; Amol A. Kulkarni, Auteur ; Klavs F. Jensen, Auteur . - 2013 . - pp 16251–16262.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 50 (Décembre 2012) . - pp 16251–16262
Mots-clés : Hydrodynamics Mass transfer Résumé : Hydrodynamics and mass transfer of immiscible liquid–liquid flows are explored in an Advanced-Flow Reactor (AFR). These systems are emerging as one of the major commercial systems for small scale continuous flow chemistry, and characterization of the transport phenomena is critical for reaction implementation. With hexane/water as a model system, we use flow visualization techniques to determine drop size distribution, hexane holdup, and specific interfacial areas for a phase flow rate range of 10–80 mL/min. The complex geometry of the AFR with its continuously changing cross section along the flow path and strategically placed obstacles creates pressure changes that cause drop breakup and enhance mass transfer. Observations show that a wide range of average drop size (0.33–1.3 mm) can be achieved in the AFR depending upon the inlet flow rates and inlet composition. Pressure drop measurements are performed to estimate the power consumption and are used to compare the efficiency of AFR with conventional liquid–liquid contactors. The analysis shows that, similar to microreactors, the AFR can provide specific interfacial areas (1000–10 000 m–1) and overall mass transfer coefficients (1.9–41 s–1) a few orders of magnitude larger than conventional stirred tank reactors and also the static mixers. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie301821k