[article]
Titre : |
Implicit LES predictions of the cavitating flow on a propeller |
Type de document : |
texte imprimé |
Auteurs : |
Rickard E. Bensow, Auteur ; Göran Bark, Auteur |
Année de publication : |
2010 |
Article en page(s) : |
10 p. |
Note générale : |
fluids engineering |
Langues : |
Anglais (eng) |
Mots-clés : |
pressure flow (dynamics) mass transfer cavitation wakes modeling cavities propellers inflow |
Résumé : |
We describe an approach to simulate dynamic cavitation behavior based on large eddy simulation of the governing flow, using an implicit approach for the subgrid terms together with a wall model and a single fluid, two-phase mixture description of the cavitation combined with a finite rate mass transfer model. The pressure-velocity coupling is handled using a PISO algorithm with a modified pressure equation for improved stability when the mass transfer terms are active. The computational model is first applied to a propeller flow in homogeneous inflow in both wetted and cavitating conditions and then tested in an artificial wake condition yielding a dynamic cavitation behavior. Although the predicted cavity extent shows discrepancy with the experimental data, the most important cavitation mechanisms are present in the simulation, including internal jets and leading edge desinence. Based on the ability of the model to predict these mechanisms, we believe that numerical assessment of the risk of cavitation nuisance, such as erosion or noise, is tangible in the near future. |
DEWEY : |
620.1 |
ISSN : |
0098-2202 |
En ligne : |
http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] |
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 4 (Avril 2010) . - 10 p.
[article] Implicit LES predictions of the cavitating flow on a propeller [texte imprimé] / Rickard E. Bensow, Auteur ; Göran Bark, Auteur . - 2010 . - 10 p. fluids engineering Langues : Anglais ( eng) in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 4 (Avril 2010) . - 10 p.
Mots-clés : |
pressure flow (dynamics) mass transfer cavitation wakes modeling cavities propellers inflow |
Résumé : |
We describe an approach to simulate dynamic cavitation behavior based on large eddy simulation of the governing flow, using an implicit approach for the subgrid terms together with a wall model and a single fluid, two-phase mixture description of the cavitation combined with a finite rate mass transfer model. The pressure-velocity coupling is handled using a PISO algorithm with a modified pressure equation for improved stability when the mass transfer terms are active. The computational model is first applied to a propeller flow in homogeneous inflow in both wetted and cavitating conditions and then tested in an artificial wake condition yielding a dynamic cavitation behavior. Although the predicted cavity extent shows discrepancy with the experimental data, the most important cavitation mechanisms are present in the simulation, including internal jets and leading edge desinence. Based on the ability of the model to predict these mechanisms, we believe that numerical assessment of the risk of cavitation nuisance, such as erosion or noise, is tangible in the near future. |
DEWEY : |
620.1 |
ISSN : |
0098-2202 |
En ligne : |
http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] |
|