Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur W. W. H. Yeung
Documents disponibles écrits par cet auteur
Affiner la rechercheOn the relationships among strouhal number, pressure drag, and separation pressure for blocked bluff-body flow / W. W. H. Yeung in Transactions of the ASME . Journal of fluids engineering, Vol. 132 N° 2 (Fevrier 2010)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 2 (Fevrier 2010) . - 10 p.
Titre : On the relationships among strouhal number, pressure drag, and separation pressure for blocked bluff-body flow Type de document : texte imprimé Auteurs : W. W. H. Yeung, Auteur Année de publication : 2010 Article en page(s) : 10 p. Note générale : fluids engineering Langues : Anglais (eng) Résumé : Strouhal number, pressure drag, and separation pressure are some of the intrinsic parameters for investigating the flow around a bluff-body. An attempt is made to formulate a relationship involving these quantities for flow around a two-dimensional bluff section of various shapes in a confined environment such as a wind tunnel. It includes (a) establishing a relation between the Strouhal number and a modified Strouhal number by a theoretical wake width and (b) incorporating this wake width into a momentum equation to determine the pressure drag. Comparisons have been made with the experimental data, a theoretical prediction (for unconfined flow), and an empirical proposal in literature to indicate that the present methodology is appropriate. Together with its extension to axisymmetric bodies, the current method is able to provide proper limits to the experimental data for a rectangular flat-plate of various width-to-span ratios. In addition, if the separation pressure is given, then the Strouhal number is inversely proportional to the drag coefficient, being comparable to a proposal based on statistical results. Finally, through an example, it is also demonstrated how one of these three parameters may be reasonably estimated from the measured values of the other two. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27408 [...] [article] On the relationships among strouhal number, pressure drag, and separation pressure for blocked bluff-body flow [texte imprimé] / W. W. H. Yeung, Auteur . - 2010 . - 10 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 2 (Fevrier 2010) . - 10 p.
Résumé : Strouhal number, pressure drag, and separation pressure are some of the intrinsic parameters for investigating the flow around a bluff-body. An attempt is made to formulate a relationship involving these quantities for flow around a two-dimensional bluff section of various shapes in a confined environment such as a wind tunnel. It includes (a) establishing a relation between the Strouhal number and a modified Strouhal number by a theoretical wake width and (b) incorporating this wake width into a momentum equation to determine the pressure drag. Comparisons have been made with the experimental data, a theoretical prediction (for unconfined flow), and an empirical proposal in literature to indicate that the present methodology is appropriate. Together with its extension to axisymmetric bodies, the current method is able to provide proper limits to the experimental data for a rectangular flat-plate of various width-to-span ratios. In addition, if the separation pressure is given, then the Strouhal number is inversely proportional to the drag coefficient, being comparable to a proposal based on statistical results. Finally, through an example, it is also demonstrated how one of these three parameters may be reasonably estimated from the measured values of the other two. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27408 [...]