[article]
Titre : |
Computational and experimental studies on cavity filling process by cold gas dynamic spray |
Type de document : |
texte imprimé |
Auteurs : |
Hidemasa Takana, Auteur ; HongYang Li, Auteur ; Kazuhiro Ogawa, Auteur |
Année de publication : |
2010 |
Article en page(s) : |
09 p. |
Note générale : |
fluids engineering |
Langues : |
Anglais (eng) |
Résumé : |
Time-dependent computational simulations on cavity filling process by cold gas dynamic spray and powder jet deposition process ranging from microscale to macroscale were carried out in order to give an insight for their advanced applications to joining, crack repair, and dental treatment. Shock wave appears in front of the substrate due to underexpansion of jet and in-flight particles interact with the shock wave before their impact. The relation between shock wave, cavity configuration, and particle in-flight behavior in supersonic jet has been discussed in detail. Based on numerical and experimental studies, it was found that when the shock wave covers up the cylindrical cavity, the cavity cannot be filled at all by deposited powders. Moreover, under the condition of shock wave appearing inside the cylindrical cavity, conical deposition was formed due to the secondary back flow jet along the cavity side wall. By adopting conical cavity, cavity can be filled completely resulting from the suppression of the secondary back flow jet along the cavity side wall. |
DEWEY : |
620.1 |
ISSN : |
0098-2202 |
En ligne : |
http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27408 [...] |
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 2 (Fevrier 2010) . - 09 p.
[article] Computational and experimental studies on cavity filling process by cold gas dynamic spray [texte imprimé] / Hidemasa Takana, Auteur ; HongYang Li, Auteur ; Kazuhiro Ogawa, Auteur . - 2010 . - 09 p. fluids engineering Langues : Anglais ( eng) in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 2 (Fevrier 2010) . - 09 p.
Résumé : |
Time-dependent computational simulations on cavity filling process by cold gas dynamic spray and powder jet deposition process ranging from microscale to macroscale were carried out in order to give an insight for their advanced applications to joining, crack repair, and dental treatment. Shock wave appears in front of the substrate due to underexpansion of jet and in-flight particles interact with the shock wave before their impact. The relation between shock wave, cavity configuration, and particle in-flight behavior in supersonic jet has been discussed in detail. Based on numerical and experimental studies, it was found that when the shock wave covers up the cylindrical cavity, the cavity cannot be filled at all by deposited powders. Moreover, under the condition of shock wave appearing inside the cylindrical cavity, conical deposition was formed due to the secondary back flow jet along the cavity side wall. By adopting conical cavity, cavity can be filled completely resulting from the suppression of the secondary back flow jet along the cavity side wall. |
DEWEY : |
620.1 |
ISSN : |
0098-2202 |
En ligne : |
http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27408 [...] |
|