Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur D. Sivakumar
Documents disponibles écrits par cet auteur
Affiner la rechercheLiquid sheet breakup in gas-centered swirl coaxial atomizers / V. Kulkarni in Transactions of the ASME . Journal of fluids engineering, Vol. 132 N° 1 (Janvier 2010)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 1 (Janvier 2010) . - 07 p.
Titre : Liquid sheet breakup in gas-centered swirl coaxial atomizers Type de document : texte imprimé Auteurs : V. Kulkarni, Auteur ; D. Sivakumar, Auteur ; C. Oommen, Auteur Année de publication : 2010 Article en page(s) : 07 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : inertia (mechanics); flow (dynamics); measurement; Reynolds number; air jets; sprays; swirling flow; water Résumé : The study deals with the breakup behavior of swirling liquid sheets discharging from gas-centered swirl coaxial atomizers with attention focused toward the understanding of the role of central gas jet on the liquid sheet breakup. Cold flow experiments on the liquid sheet breakup were carried out by employing custom fabricated gas-centered swirl coaxial atomizers using water and air as experimental fluids. Photographic techniques were employed to capture the flow behavior of liquid sheets at different flow conditions. Quantitative variation on the breakup length of the liquid sheet and spray width were obtained from the measurements deduced from the images of liquid sheets. The sheet breakup process is significantly influenced by the central air jet. It is observed that low inertia liquid sheets are more vulnerable to the presence of the central air jet and develop shorter breakup lengths at smaller values of the air jet Reynolds number Reg. High inertia liquid sheets ignore the presence of the central air jet at smaller values of Reg and eventually develop shorter breakup lengths at higher values of Reg. The experimental evidences suggest that the central air jet causes corrugations on the liquid sheet surface, which may be promoting the production of thick liquid ligaments from the sheet surface. The level of surface corrugations on the liquid sheet increases with increasing Reg. Qualitative analysis of experimental observations reveals that the entrainment process of air established between the inner surface of the liquid sheet and the central air jet is the primary trigger for the sheet breakup. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] Liquid sheet breakup in gas-centered swirl coaxial atomizers [texte imprimé] / V. Kulkarni, Auteur ; D. Sivakumar, Auteur ; C. Oommen, Auteur . - 2010 . - 07 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 1 (Janvier 2010) . - 07 p.
Mots-clés : inertia (mechanics); flow (dynamics); measurement; Reynolds number; air jets; sprays; swirling flow; water Résumé : The study deals with the breakup behavior of swirling liquid sheets discharging from gas-centered swirl coaxial atomizers with attention focused toward the understanding of the role of central gas jet on the liquid sheet breakup. Cold flow experiments on the liquid sheet breakup were carried out by employing custom fabricated gas-centered swirl coaxial atomizers using water and air as experimental fluids. Photographic techniques were employed to capture the flow behavior of liquid sheets at different flow conditions. Quantitative variation on the breakup length of the liquid sheet and spray width were obtained from the measurements deduced from the images of liquid sheets. The sheet breakup process is significantly influenced by the central air jet. It is observed that low inertia liquid sheets are more vulnerable to the presence of the central air jet and develop shorter breakup lengths at smaller values of the air jet Reynolds number Reg. High inertia liquid sheets ignore the presence of the central air jet at smaller values of Reg and eventually develop shorter breakup lengths at higher values of Reg. The experimental evidences suggest that the central air jet causes corrugations on the liquid sheet surface, which may be promoting the production of thick liquid ligaments from the sheet surface. The level of surface corrugations on the liquid sheet increases with increasing Reg. Qualitative analysis of experimental observations reveals that the entrainment process of air established between the inner surface of the liquid sheet and the central air jet is the primary trigger for the sheet breakup. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...]