Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Kaiming Xia
Documents disponibles écrits par cet auteur
Affiner la rechercheMicromechanical evaluation of the damping behavior of modified silica fume admixed concrete / Tongyan Pan in Journal of engineering mechanics, Vol. 138 N° 12 (Décembre 2012)
[article]
in Journal of engineering mechanics > Vol. 138 N° 12 (Décembre 2012) . - pp.1411–1419.
Titre : Micromechanical evaluation of the damping behavior of modified silica fume admixed concrete Type de document : texte imprimé Auteurs : Tongyan Pan, Auteur ; Kaiming Xia, Auteur Année de publication : 2013 Article en page(s) : pp.1411–1419. Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Damping capability Modified silica fume Loss modulus Loss tangent Storage modulus Micromechanical modeling Résumé : Vibration reduction or damping capability is highly desired for structural stability when hazardous impact loads are applied to a concrete structure. Damping capability of concrete structures depends primarily on the viscoelastic response of concrete material to the magnitudes and frequencies of impact loads, which in turn requires a minimum level of stiffness and damping capacity of concrete. A common industrial byproduct material—silica fume that showed certain antishock potential when mixed with concretes—was modified with silane in this study toward improved capabilities in both stiffness and damping. To evaluate the effectiveness of the modified silica fume (MSF), a series of dynamic flexural tests and numerical analyses were conducted, of which the results are presented. A three-dimensional micromechanical model was developed based on the discrete element method (DEM), which was then employed to study the stiffness and damping behavior of the admixed concrete. A 10% usage of MSF (by weight of cement) was found to significantly enhance the storage and loss moduli and the loss tangent of concrete. The DEM model developed can be used for evaluating and designing energy-absorbing concretes for general military and civil uses. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000446 [article] Micromechanical evaluation of the damping behavior of modified silica fume admixed concrete [texte imprimé] / Tongyan Pan, Auteur ; Kaiming Xia, Auteur . - 2013 . - pp.1411–1419.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 138 N° 12 (Décembre 2012) . - pp.1411–1419.
Mots-clés : Damping capability Modified silica fume Loss modulus Loss tangent Storage modulus Micromechanical modeling Résumé : Vibration reduction or damping capability is highly desired for structural stability when hazardous impact loads are applied to a concrete structure. Damping capability of concrete structures depends primarily on the viscoelastic response of concrete material to the magnitudes and frequencies of impact loads, which in turn requires a minimum level of stiffness and damping capacity of concrete. A common industrial byproduct material—silica fume that showed certain antishock potential when mixed with concretes—was modified with silane in this study toward improved capabilities in both stiffness and damping. To evaluate the effectiveness of the modified silica fume (MSF), a series of dynamic flexural tests and numerical analyses were conducted, of which the results are presented. A three-dimensional micromechanical model was developed based on the discrete element method (DEM), which was then employed to study the stiffness and damping behavior of the admixed concrete. A 10% usage of MSF (by weight of cement) was found to significantly enhance the storage and loss moduli and the loss tangent of concrete. The DEM model developed can be used for evaluating and designing energy-absorbing concretes for general military and civil uses. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000446