Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jacob Brouwer
Documents disponibles écrits par cet auteur
Affiner la rechercheLinear quadratic regulator for a bottoming solid oxide fuel cell gas turbine hybrid system / Fabian Mueller in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 131 N° 5 (Septembre 2009)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 131 N° 5 (Septembre 2009) . - 09 p.
Titre : Linear quadratic regulator for a bottoming solid oxide fuel cell gas turbine hybrid system Type de document : texte imprimé Auteurs : Fabian Mueller, Auteur ; Jabbari, Faryar, Auteur ; Jacob Brouwer, Auteur Année de publication : 2009 Article en page(s) : 09 p. Note générale : dynamic systems Langues : Anglais (eng) Mots-clés : fuel cell gas turbine hybrid; subsystems; control algorithms Résumé : The control system for fuel cell gas turbine hybrid power plants plays an important role in achieving synergistic operation of subsystems, improving reliability of operation, and reducing frequency of maintenance and downtime. In this paper, we discuss development of advanced control algorithms for a system composed of an internally reforming solid oxide fuel cell coupled with an indirectly heated Brayton cycle gas turbine. In high temperature fuel cells it is critical to closely maintain fuel cell temperatures and to provide sufficient electrochemical reacting species to ensure system durability. The control objective explored here is focused on maintaining the system power output, temperature constraints, and target fuel utilization, in the presence of ambient temperature and fuel composition perturbations. The present work details the development of a centralized linear quadratic regulator (LQR) including state estimation via Kalman filtering. The controller is augmented by local turbine speed control and integral system power control. Relative gain array analysis has indicated that independent control loops of the hybrid system are coupled at time scales greater than 1 s. The objective of the paper is to quantify the performance of a centralized LQR in rejecting fuel and ambient temperature disturbances compared with a previously developed decentralized controller. Results indicate that both the LQR and decentralized controller can well maintain the system power to the disturbances. However, the LQR ensures better maintenance of the fuel cell stack voltage and temperature that can improve high temperature fuel cell system durability. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&is [...] [article] Linear quadratic regulator for a bottoming solid oxide fuel cell gas turbine hybrid system [texte imprimé] / Fabian Mueller, Auteur ; Jabbari, Faryar, Auteur ; Jacob Brouwer, Auteur . - 2009 . - 09 p.
dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 131 N° 5 (Septembre 2009) . - 09 p.
Mots-clés : fuel cell gas turbine hybrid; subsystems; control algorithms Résumé : The control system for fuel cell gas turbine hybrid power plants plays an important role in achieving synergistic operation of subsystems, improving reliability of operation, and reducing frequency of maintenance and downtime. In this paper, we discuss development of advanced control algorithms for a system composed of an internally reforming solid oxide fuel cell coupled with an indirectly heated Brayton cycle gas turbine. In high temperature fuel cells it is critical to closely maintain fuel cell temperatures and to provide sufficient electrochemical reacting species to ensure system durability. The control objective explored here is focused on maintaining the system power output, temperature constraints, and target fuel utilization, in the presence of ambient temperature and fuel composition perturbations. The present work details the development of a centralized linear quadratic regulator (LQR) including state estimation via Kalman filtering. The controller is augmented by local turbine speed control and integral system power control. Relative gain array analysis has indicated that independent control loops of the hybrid system are coupled at time scales greater than 1 s. The objective of the paper is to quantify the performance of a centralized LQR in rejecting fuel and ambient temperature disturbances compared with a previously developed decentralized controller. Results indicate that both the LQR and decentralized controller can well maintain the system power to the disturbances. However, the LQR ensures better maintenance of the fuel cell stack voltage and temperature that can improve high temperature fuel cell system durability. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&is [...]