Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur A. T. Shenton
Documents disponibles écrits par cet auteur
Affiner la rechercheA neural network implementation of peak pressure position control by ionization current feedback / N. Rivara in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 131 N° 5 (Septembre 2009)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 131 N° 5 (Septembre 2009) . - 08 p.
Titre : A neural network implementation of peak pressure position control by ionization current feedback Type de document : texte imprimé Auteurs : N. Rivara, Auteur ; P. B. Dickinson, Auteur ; A. T. Shenton, Auteur Année de publication : 2009 Article en page(s) : 08 p. Note générale : dynamic systems Langues : Anglais (eng) Mots-clés : neural-network; cylinder peak pressure position; dynamic training data; linear robust constrained-variance controller Résumé : This paper describes a neural-network (NN)-based scheme for the control of a cylinder peak pressure position (PPP)—also known as the location of peak pressure (LPP)—by spark timing in a gasoline internal combustion engine. The scheme uses the ionization current to act as a virtual sensor, which is subsequently used for PPP control. A NN is trained offline on principal-component analysis data to predict the cylinder peak pressure position under dynamically varying engine load, speed, and spark advance (SA) settings. Experimental results demonstrate that the PPP prediction by the NN correlates well with those measured from in-cylinder pressure sensors across transients of load, SA, and engine speeds. The dynamic training data allow rapid model identification across the identified engine range, as opposed to just fixed operating points. A linear robust constrained-variance controller, which is a robustified form of the minimum variance controller, is used to regulate the PPP by SA control action, using the NN as a PPP sensor. The control scheme is validated by experimental implementation on a port fuel-injected four-cylinder 1.6 l gasoline internal combustion engine. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&is [...] [article] A neural network implementation of peak pressure position control by ionization current feedback [texte imprimé] / N. Rivara, Auteur ; P. B. Dickinson, Auteur ; A. T. Shenton, Auteur . - 2009 . - 08 p.
dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 131 N° 5 (Septembre 2009) . - 08 p.
Mots-clés : neural-network; cylinder peak pressure position; dynamic training data; linear robust constrained-variance controller Résumé : This paper describes a neural-network (NN)-based scheme for the control of a cylinder peak pressure position (PPP)—also known as the location of peak pressure (LPP)—by spark timing in a gasoline internal combustion engine. The scheme uses the ionization current to act as a virtual sensor, which is subsequently used for PPP control. A NN is trained offline on principal-component analysis data to predict the cylinder peak pressure position under dynamically varying engine load, speed, and spark advance (SA) settings. Experimental results demonstrate that the PPP prediction by the NN correlates well with those measured from in-cylinder pressure sensors across transients of load, SA, and engine speeds. The dynamic training data allow rapid model identification across the identified engine range, as opposed to just fixed operating points. A linear robust constrained-variance controller, which is a robustified form of the minimum variance controller, is used to regulate the PPP by SA control action, using the NN as a PPP sensor. The control scheme is validated by experimental implementation on a port fuel-injected four-cylinder 1.6 l gasoline internal combustion engine. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&is [...]