Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Eugenio Schuster
Documents disponibles écrits par cet auteur
Affiner la rechercheA closed-form full-state feedback controller for stabilization of 3D magnetohydrodynamic channel flow / Vazquez, Rafael in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 131 N° 4 (Juillet 2009)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 131 N° 4 (Juillet 2009) . - 10 p.
Titre : A closed-form full-state feedback controller for stabilization of 3D magnetohydrodynamic channel flow Type de document : texte imprimé Auteurs : Vazquez, Rafael, Auteur ; Eugenio Schuster, Auteur ; Krstic, Miroslav, Auteur Année de publication : 2009 Article en page(s) : 10 p. Note générale : dynamic systems Langues : Anglais (eng) Mots-clés : boundary feedback law; magnetohydrodynamic channel flow; Navier–Stokes equations; Reynolds numbers Résumé : We present a boundary feedback law that stabilizes the velocity, pressure, and electromagnetic fields in a magnetohydrodynamic (MHD) channel flow. The MHD channel flow, also known as Hartmann flow, is a benchmark for applications such as cooling, hypersonic flight, and propulsion. It involves an electrically conducting fluid moving between parallel plates in the presence of an externally imposed transverse magnetic field. The system is described by the inductionless MHD equations, a combination of the Navier–Stokes equations and a Poisson equation for the electric potential under the MHD approximation in a low magnetic Reynolds number regime. This model is unstable for large Reynolds numbers and is stabilized by actuation of velocity and the electric potential at only one of the walls. The backstepping method for stabilization of parabolic partial differential equations (PDEs) is applied to the velocity field system written in appropriate coordinates. Control gains are computed by solving a set of linear hyperbolic PDEs. Stabilization of nondiscretized 3D MHD channel flow has so far been an open problem. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/Issue.aspx?issueID=26497&di [...] [article] A closed-form full-state feedback controller for stabilization of 3D magnetohydrodynamic channel flow [texte imprimé] / Vazquez, Rafael, Auteur ; Eugenio Schuster, Auteur ; Krstic, Miroslav, Auteur . - 2009 . - 10 p.
dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 131 N° 4 (Juillet 2009) . - 10 p.
Mots-clés : boundary feedback law; magnetohydrodynamic channel flow; Navier–Stokes equations; Reynolds numbers Résumé : We present a boundary feedback law that stabilizes the velocity, pressure, and electromagnetic fields in a magnetohydrodynamic (MHD) channel flow. The MHD channel flow, also known as Hartmann flow, is a benchmark for applications such as cooling, hypersonic flight, and propulsion. It involves an electrically conducting fluid moving between parallel plates in the presence of an externally imposed transverse magnetic field. The system is described by the inductionless MHD equations, a combination of the Navier–Stokes equations and a Poisson equation for the electric potential under the MHD approximation in a low magnetic Reynolds number regime. This model is unstable for large Reynolds numbers and is stabilized by actuation of velocity and the electric potential at only one of the walls. The backstepping method for stabilization of parabolic partial differential equations (PDEs) is applied to the velocity field system written in appropriate coordinates. Control gains are computed by solving a set of linear hyperbolic PDEs. Stabilization of nondiscretized 3D MHD channel flow has so far been an open problem. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/Issue.aspx?issueID=26497&di [...]