Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Galen King
Documents disponibles écrits par cet auteur
Affiner la rechercheData-dimensionality reduction using information-theoretic stepwise feature selector / Alok A. Joshi in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 131 N° 4 (Juillet 2009)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 131 N° 4 (Juillet 2009) . - 05 p.
Titre : Data-dimensionality reduction using information-theoretic stepwise feature selector Type de document : texte imprimé Auteurs : Alok A. Joshi, Auteur ; Peter Meckl, Auteur ; Galen King, Auteur Année de publication : 2009 Article en page(s) : 05 p. Note générale : dynamic systems Langues : Anglais (eng) Mots-clés : information-theoretic stepwise feature selector; diesel engine Résumé : A novel information-theoretic stepwise feature selector (ITSFS) is designed to reduce the dimension of diesel engine data. This data consist of 43 sensor measurements acquired from diesel engines that are either in a healthy state or in one of seven different fault states. Using ITSFS, the minimum number of sensors from a pool of 43 sensors is selected so that eight states of the engine can be classified with reasonable accuracy. Various classifiers are trained and tested for fault classification accuracy using the field data before and after dimension reduction by ITSFS. The process of dimension reduction and classification is repeated using other existing dimension reduction techniques such as simulated annealing and regression subset selection. The classification accuracies from these techniques are compared with those obtained by data reduced by the proposed feature selector. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/Issue.aspx?issueID=26497&di [...] [article] Data-dimensionality reduction using information-theoretic stepwise feature selector [texte imprimé] / Alok A. Joshi, Auteur ; Peter Meckl, Auteur ; Galen King, Auteur . - 2009 . - 05 p.
dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 131 N° 4 (Juillet 2009) . - 05 p.
Mots-clés : information-theoretic stepwise feature selector; diesel engine Résumé : A novel information-theoretic stepwise feature selector (ITSFS) is designed to reduce the dimension of diesel engine data. This data consist of 43 sensor measurements acquired from diesel engines that are either in a healthy state or in one of seven different fault states. Using ITSFS, the minimum number of sensors from a pool of 43 sensors is selected so that eight states of the engine can be classified with reasonable accuracy. Various classifiers are trained and tested for fault classification accuracy using the field data before and after dimension reduction by ITSFS. The process of dimension reduction and classification is repeated using other existing dimension reduction techniques such as simulated annealing and regression subset selection. The classification accuracies from these techniques are compared with those obtained by data reduced by the proposed feature selector. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/Issue.aspx?issueID=26497&di [...]