Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur J. R. Wright
Documents disponibles écrits par cet auteur
Affiner la rechercheHuman jumping and bobbing forces on flexible structures / R. E. Harrison in Journal of engineering mechanics, Vol. 134 n°8 (Août 2008)
[article]
in Journal of engineering mechanics > Vol. 134 n°8 (Août 2008) . - pp.663–675.
Titre : Human jumping and bobbing forces on flexible structures : Effect of structural properties Type de document : texte imprimé Auteurs : R. E. Harrison, Auteur ; S. Yao, Auteur ; J. R. Wright, Auteur Année de publication : 2008 Article en page(s) : pp.663–675. Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Dynamic loads Biomechanics Serviceability Structural dynamics Vibration Laboratory tests Résumé : The behavior of humans jumping and bobbing on flexible structures has become a matter of some concern for both structural integrity and human tolerance. The issue is of great importance for a number of structure types including stadia terraces. A unique test rig has been developed for exploring the forces, accelerations, and displacements that occur when a human subject jumps or bobs on a flexible structure where motion can be perceived. In tests reported earlier, it was found that the subject is able to generate near resonant structural response but it is extremely difficult, if not impossible, to jump or bob at or very near to the natural frequency of the structure when its vertical motion is significant. Also, under such near-resonant conditions, the force developed by the subject was found to drop significantly. In this paper, the effect of altering the subject-to-structure mass ratio and the damping ratio of the structure on these phenomena is presented. As would be expected, it is shown that as the structure becomes more massive and more highly damped it moves less for nominally the same excitation. In this situation, it becomes easier to jump and bob near to resonance and the degree of force dropout reduces, although it is still significant for even the most massive and highly damped case considered. A method for including these effects of human-structure interaction in a load model for dynamic response calculations is then proposed. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282008%29134%3A8%2866 [...] [article] Human jumping and bobbing forces on flexible structures : Effect of structural properties [texte imprimé] / R. E. Harrison, Auteur ; S. Yao, Auteur ; J. R. Wright, Auteur . - 2008 . - pp.663–675.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 134 n°8 (Août 2008) . - pp.663–675.
Mots-clés : Dynamic loads Biomechanics Serviceability Structural dynamics Vibration Laboratory tests Résumé : The behavior of humans jumping and bobbing on flexible structures has become a matter of some concern for both structural integrity and human tolerance. The issue is of great importance for a number of structure types including stadia terraces. A unique test rig has been developed for exploring the forces, accelerations, and displacements that occur when a human subject jumps or bobs on a flexible structure where motion can be perceived. In tests reported earlier, it was found that the subject is able to generate near resonant structural response but it is extremely difficult, if not impossible, to jump or bob at or very near to the natural frequency of the structure when its vertical motion is significant. Also, under such near-resonant conditions, the force developed by the subject was found to drop significantly. In this paper, the effect of altering the subject-to-structure mass ratio and the damping ratio of the structure on these phenomena is presented. As would be expected, it is shown that as the structure becomes more massive and more highly damped it moves less for nominally the same excitation. In this situation, it becomes easier to jump and bob near to resonance and the degree of force dropout reduces, although it is still significant for even the most massive and highly damped case considered. A method for including these effects of human-structure interaction in a load model for dynamic response calculations is then proposed. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282008%29134%3A8%2866 [...]