Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Athanasios Makrodimopoulos
Documents disponibles écrits par cet auteur
Affiner la rechercheFinite-element limit analysis of mohr–coulomb materials in 3D using semidefinite programming / Christopher M. Martin in Journal of engineering mechanics, Vol. 134 N°4 (Avril 2008)
[article]
in Journal of engineering mechanics > Vol. 134 N°4 (Avril 2008) . - pp.339–347.
Titre : Finite-element limit analysis of mohr–coulomb materials in 3D using semidefinite programming Type de document : texte imprimé Auteurs : Christopher M. Martin, Auteur ; Athanasios Makrodimopoulos, Auteur Année de publication : 2008 Article en page(s) : pp.339–347. Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Limit analysis Finite element method Optimization Eigenvalues Mathematical programming Résumé : Semidefinite programming (SDP) provides a convenient framework for the solution of optimization problems involving the eigenvalues of symmetric matrices. The classical Mohr–Coulomb yield criterion for an isotropic cohesive-frictional continuum is most naturally expressed in terms of principal stresses (eigenvalues of the symmetric stress tensor), while the associated flow rule and plastic dissipation function can both be expressed in terms of principal strains (eigenvalues of the symmetric strain tensor). This suggests that SDP could be suitable for performing limit analysis of three-dimensional (3D) structures obeying the Mohr–Coulomb criterion, where the yield and flow rule constraints are difficult to enforce using other methods of optimization. In this paper it is demonstrated that SDP can indeed be used to obtain both lower and upper bounds on the exact collapse load for a Mohr–Coulomb continuum in 3D, though a novel derivation is needed to arrive at an efficient SDP formulation of the upper bound in terms of kinematic quantities only. Two numerical examples are studied, using finite-element discretizations of the stress and displacement fields that preserve the strictness of the lower and upper bound solutions. The arising optimization problems are solved using the general-purpose SDP solver SeDuMi, with no attempt to modify or tailor the code for this specific application. Even so, 3D analyses of moderate size (several thousand tetrahedral elements) are handled with encouraging efficiency. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282008%29134%3A4%2833 [...] [article] Finite-element limit analysis of mohr–coulomb materials in 3D using semidefinite programming [texte imprimé] / Christopher M. Martin, Auteur ; Athanasios Makrodimopoulos, Auteur . - 2008 . - pp.339–347.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 134 N°4 (Avril 2008) . - pp.339–347.
Mots-clés : Limit analysis Finite element method Optimization Eigenvalues Mathematical programming Résumé : Semidefinite programming (SDP) provides a convenient framework for the solution of optimization problems involving the eigenvalues of symmetric matrices. The classical Mohr–Coulomb yield criterion for an isotropic cohesive-frictional continuum is most naturally expressed in terms of principal stresses (eigenvalues of the symmetric stress tensor), while the associated flow rule and plastic dissipation function can both be expressed in terms of principal strains (eigenvalues of the symmetric strain tensor). This suggests that SDP could be suitable for performing limit analysis of three-dimensional (3D) structures obeying the Mohr–Coulomb criterion, where the yield and flow rule constraints are difficult to enforce using other methods of optimization. In this paper it is demonstrated that SDP can indeed be used to obtain both lower and upper bounds on the exact collapse load for a Mohr–Coulomb continuum in 3D, though a novel derivation is needed to arrive at an efficient SDP formulation of the upper bound in terms of kinematic quantities only. Two numerical examples are studied, using finite-element discretizations of the stress and displacement fields that preserve the strictness of the lower and upper bound solutions. The arising optimization problems are solved using the general-purpose SDP solver SeDuMi, with no attempt to modify or tailor the code for this specific application. Even so, 3D analyses of moderate size (several thousand tetrahedral elements) are handled with encouraging efficiency. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282008%29134%3A4%2833 [...]