Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur M. Ahmed
Documents disponibles écrits par cet auteur
Affiner la rechercheBreak-up length and spreading angle of liquid sheets formed by splash plate nozzles / M. Ahmed in Transactions of the ASME . Journal of fluids engineering, Vol. 131 N° 1 (Janvier 2009)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 1 (Janvier 2009) . - 09 p.
Titre : Break-up length and spreading angle of liquid sheets formed by splash plate nozzles Type de document : texte imprimé Auteurs : M. Ahmed, Auteur ; N. Ashgriz, Auteur ; H. N. Tran, Auteur Année de publication : 2009 Article en page(s) : 09 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : flow (dynamics); viscosity; nozzles Résumé : An experimental investigation is conducted to determine the effect of liquid viscosity and density, nozzle diameter, and flow velocity on the break-up length and spreading angle of liquid sheets formed by splash plate nozzles. Various mixtures of corn syrup and water were used to obtain viscosities in the range of 1–170 mPa s. Four different splash plate nozzle diameters of 0.5 mm, 0.75 mm, 1 mm, and 2 mm, with a constant plate angle of 55 deg were tested. The liquid sheet angles and the break-up lengths were measured at various operating conditions. An empirical correlation for the sheet spreading angle and a semi-empirical correlation for the sheet break-up lengths are developed. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] Break-up length and spreading angle of liquid sheets formed by splash plate nozzles [texte imprimé] / M. Ahmed, Auteur ; N. Ashgriz, Auteur ; H. N. Tran, Auteur . - 2009 . - 09 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 1 (Janvier 2009) . - 09 p.
Mots-clés : flow (dynamics); viscosity; nozzles Résumé : An experimental investigation is conducted to determine the effect of liquid viscosity and density, nozzle diameter, and flow velocity on the break-up length and spreading angle of liquid sheets formed by splash plate nozzles. Various mixtures of corn syrup and water were used to obtain viscosities in the range of 1–170 mPa s. Four different splash plate nozzle diameters of 0.5 mm, 0.75 mm, 1 mm, and 2 mm, with a constant plate angle of 55 deg were tested. The liquid sheet angles and the break-up lengths were measured at various operating conditions. An empirical correlation for the sheet spreading angle and a semi-empirical correlation for the sheet break-up lengths are developed. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] Influence of wall inclination angles on the onset of gas entrainment during single and dual discharges from a reservoir / M. Ahmed in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 2 (Fevrier 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 2 (Fevrier 2008) . - 16 p.
Titre : Influence of wall inclination angles on the onset of gas entrainment during single and dual discharges from a reservoir Type de document : texte imprimé Auteurs : M. Ahmed, Auteur Année de publication : 2009 Article en page(s) : 16 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Bifurcation; flow (dynamics) Résumé : A theoretical analysis was carried out to predict the influences of wall inclination angles of large reservoirs on the onset of gas entrainment during single and dual discharges from a stratified two-phase region. The findings reveal that when the wall inclination angle differs from zero, along with low values of Froude number, two distinct flow regimes occur: the gas-entrainment and no gas-entrainment regimes. A new criterion has been developed to predict the critical Froude number at the transition from the gas-entrainment to the no-gas-entrainment regime. The critical Froude number is defined as a function of the wall inclination angle for a single discharge. For dual discharge, the critical Froude number is found to be dependent on the wall inclination angle, the separating distance between the centerlines of the two branches, as well as the Froude number of the second branch. Furthermore, four different flow regions are mapped, representing the flow regime, as well as the two-phase flow for each branch. These maps serve to predict the flow regions, mass flow rates, and quality during single and dual two-phase discharges. For the gas-entrainment regime, the predicted values of the critical height at the onset of gas entrainment are compared with the experimental data reported in literatures. Comparisons showed good concurrence between the measured and predicted results. Furthermore, the influence of the wall inclination angle on the flow regions, the predicted critical height, and the location of the gas entrainment are presented and discussed at different values of independent variables. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] Influence of wall inclination angles on the onset of gas entrainment during single and dual discharges from a reservoir [texte imprimé] / M. Ahmed, Auteur . - 2009 . - 16 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 2 (Fevrier 2008) . - 16 p.
Mots-clés : Bifurcation; flow (dynamics) Résumé : A theoretical analysis was carried out to predict the influences of wall inclination angles of large reservoirs on the onset of gas entrainment during single and dual discharges from a stratified two-phase region. The findings reveal that when the wall inclination angle differs from zero, along with low values of Froude number, two distinct flow regimes occur: the gas-entrainment and no gas-entrainment regimes. A new criterion has been developed to predict the critical Froude number at the transition from the gas-entrainment to the no-gas-entrainment regime. The critical Froude number is defined as a function of the wall inclination angle for a single discharge. For dual discharge, the critical Froude number is found to be dependent on the wall inclination angle, the separating distance between the centerlines of the two branches, as well as the Froude number of the second branch. Furthermore, four different flow regions are mapped, representing the flow regime, as well as the two-phase flow for each branch. These maps serve to predict the flow regions, mass flow rates, and quality during single and dual two-phase discharges. For the gas-entrainment regime, the predicted values of the critical height at the onset of gas entrainment are compared with the experimental data reported in literatures. Comparisons showed good concurrence between the measured and predicted results. Furthermore, the influence of the wall inclination angle on the flow regions, the predicted critical height, and the location of the gas entrainment are presented and discussed at different values of independent variables. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...]