[article]
Titre : |
Break-up length and spreading angle of liquid sheets formed by splash plate nozzles |
Type de document : |
texte imprimé |
Auteurs : |
M. Ahmed, Auteur ; N. Ashgriz, Auteur ; H. N. Tran, Auteur |
Année de publication : |
2009 |
Article en page(s) : |
09 p. |
Note générale : |
fluids engineering |
Langues : |
Anglais (eng) |
Mots-clés : |
flow (dynamics) viscosity nozzles |
Résumé : |
An experimental investigation is conducted to determine the effect of liquid viscosity and density, nozzle diameter, and flow velocity on the break-up length and spreading angle of liquid sheets formed by splash plate nozzles. Various mixtures of corn syrup and water were used to obtain viscosities in the range of 1–170 mPa s. Four different splash plate nozzle diameters of 0.5 mm, 0.75 mm, 1 mm, and 2 mm, with a constant plate angle of 55 deg were tested. The liquid sheet angles and the break-up lengths were measured at various operating conditions. An empirical correlation for the sheet spreading angle and a semi-empirical correlation for the sheet break-up lengths are developed. |
DEWEY : |
620.1 |
ISSN : |
0098-2202 |
En ligne : |
http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] |
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 1 (Janvier 2009) . - 09 p.
[article] Break-up length and spreading angle of liquid sheets formed by splash plate nozzles [texte imprimé] / M. Ahmed, Auteur ; N. Ashgriz, Auteur ; H. N. Tran, Auteur . - 2009 . - 09 p. fluids engineering Langues : Anglais ( eng) in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 1 (Janvier 2009) . - 09 p.
Mots-clés : |
flow (dynamics) viscosity nozzles |
Résumé : |
An experimental investigation is conducted to determine the effect of liquid viscosity and density, nozzle diameter, and flow velocity on the break-up length and spreading angle of liquid sheets formed by splash plate nozzles. Various mixtures of corn syrup and water were used to obtain viscosities in the range of 1–170 mPa s. Four different splash plate nozzle diameters of 0.5 mm, 0.75 mm, 1 mm, and 2 mm, with a constant plate angle of 55 deg were tested. The liquid sheet angles and the break-up lengths were measured at various operating conditions. An empirical correlation for the sheet spreading angle and a semi-empirical correlation for the sheet break-up lengths are developed. |
DEWEY : |
620.1 |
ISSN : |
0098-2202 |
En ligne : |
http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] |
|