Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Gianluca Iaccarino
Documents disponibles écrits par cet auteur
Affiner la rechercheAn aerodynamic investigation of an isolated rotating formula 1 wheel assembly / John Axerio-Cilies in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 12 (Décembre 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 12 (Décembre 2012) . - 16 p.
Titre : An aerodynamic investigation of an isolated rotating formula 1 wheel assembly Type de document : texte imprimé Auteurs : John Axerio-Cilies, Auteur ; Gianluca Iaccarino, Auteur Année de publication : 2013 Article en page(s) : 16 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : pressure; flow (dynamics); turbulence; manufacturing; stress; wakes; computational fluid dynamics; engineering simulation; vortices; formulas; geometry; tires; wheels; wind tunnels Résumé : The flowfield around a 60% scale rotating Formula 1 tire in contact with the ground in a closed wind tunnel at a Reynolds number of 500,000 was examined computationally and experimentally. The goal of this study was to assess the accuracy of unsteady Reynolds-averaged Navier–Stokes (URANS) equations and confirm the existence of large scale vortical and flow recirculating features. A replica deformable F1 tire model that includes four tire treads and all brake components was used to determine the sensitivity of the wake to cross flow within the tire hub as well as the flow blockage caused by the brake assembly. Several turbulence closures were employed and the one that matched closest to the experimental PIV data was the Reynolds stress model. The variability between the six turbulence closures is shown by comparing velocity profiles, pressure distributions, and vortex eccentricity. The sensitivity of the wake to four different hub geometries, contact patch boundary conditions, multiple reference frame (MRF) rotor and spoke treatment, and time step size are also discussed. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] An aerodynamic investigation of an isolated rotating formula 1 wheel assembly [texte imprimé] / John Axerio-Cilies, Auteur ; Gianluca Iaccarino, Auteur . - 2013 . - 16 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 12 (Décembre 2012) . - 16 p.
Mots-clés : pressure; flow (dynamics); turbulence; manufacturing; stress; wakes; computational fluid dynamics; engineering simulation; vortices; formulas; geometry; tires; wheels; wind tunnels Résumé : The flowfield around a 60% scale rotating Formula 1 tire in contact with the ground in a closed wind tunnel at a Reynolds number of 500,000 was examined computationally and experimentally. The goal of this study was to assess the accuracy of unsteady Reynolds-averaged Navier–Stokes (URANS) equations and confirm the existence of large scale vortical and flow recirculating features. A replica deformable F1 tire model that includes four tire treads and all brake components was used to determine the sensitivity of the wake to cross flow within the tire hub as well as the flow blockage caused by the brake assembly. Several turbulence closures were employed and the one that matched closest to the experimental PIV data was the Reynolds stress model. The variability between the six turbulence closures is shown by comparing velocity profiles, pressure distributions, and vortex eccentricity. The sensitivity of the wake to four different hub geometries, contact patch boundary conditions, multiple reference frame (MRF) rotor and spoke treatment, and time step size are also discussed. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] Unsteady aerodynamic flow investigation around a simplified square-back road vehicle with drag reduction devices / Bahram Khalighi in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 6 (Juin 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 6 (Juin 2012) . - 16 p.
Titre : Unsteady aerodynamic flow investigation around a simplified square-back road vehicle with drag reduction devices Type de document : texte imprimé Auteurs : Bahram Khalighi, Auteur ; Kuo-Huey Chen, Auteur ; Gianluca Iaccarino, Auteur Année de publication : 2012 Article en page(s) : 16 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : vehicle aerodynamics; unsteady RANS; drag reduction; aerodynamic drag; active flow control Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The unsteady flow around a simplified road vehicle model with and without drag reduction devices is investigated. The simulations are carried out using the unsteady RANS in conjunction with the v2-f turbulence model. The corresponding experiments are performed in a small wind tunnel which includes pressure and velocity fields measurements. The devices are add-on geometry parts (a box with a cavity and, boat-tail without a cavity) which are attached to the back of the square-back model to improve the pressure recovery and reduce the flow unsteadiness. The results show that the recirculation regions at the base are shortened and weakened and the base pressure is significantly increased by the devices which lead to lower drag coefficients (up to 30% reduction in drag). Also, the results indicate a reduction of the turbulence intensities in the wake as well as a rapid upward deflection of the underbody flow with the devices in place. A reduction of the unsteadiness is the common element of the devices studied. The baseline configuration (square-back) exhibits strong three-dimensional flapping of the wake. The main shedding frequency captured agrees well with the available experimental data. Comparisons with the measurements show that the simulations agree reasonably well with the experiments in terms of drag and the flow structures. Finally, a blowing system (Coanda jet) is investigated numerically. In this case a drag reduction of up to 50% is realized. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000006 [...] [article] Unsteady aerodynamic flow investigation around a simplified square-back road vehicle with drag reduction devices [texte imprimé] / Bahram Khalighi, Auteur ; Kuo-Huey Chen, Auteur ; Gianluca Iaccarino, Auteur . - 2012 . - 16 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 6 (Juin 2012) . - 16 p.
Mots-clés : vehicle aerodynamics; unsteady RANS; drag reduction; aerodynamic drag; active flow control Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The unsteady flow around a simplified road vehicle model with and without drag reduction devices is investigated. The simulations are carried out using the unsteady RANS in conjunction with the v2-f turbulence model. The corresponding experiments are performed in a small wind tunnel which includes pressure and velocity fields measurements. The devices are add-on geometry parts (a box with a cavity and, boat-tail without a cavity) which are attached to the back of the square-back model to improve the pressure recovery and reduce the flow unsteadiness. The results show that the recirculation regions at the base are shortened and weakened and the base pressure is significantly increased by the devices which lead to lower drag coefficients (up to 30% reduction in drag). Also, the results indicate a reduction of the turbulence intensities in the wake as well as a rapid upward deflection of the underbody flow with the devices in place. A reduction of the unsteadiness is the common element of the devices studied. The baseline configuration (square-back) exhibits strong three-dimensional flapping of the wake. The main shedding frequency captured agrees well with the available experimental data. Comparisons with the measurements show that the simulations agree reasonably well with the experiments in terms of drag and the flow structures. Finally, a blowing system (Coanda jet) is investigated numerically. In this case a drag reduction of up to 50% is realized. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000006 [...]