Détail de l'auteur
Auteur Christopher L. Lee |
Documents disponibles écrits par cet auteur (2)



Markov chain monte carlo-based method for flaw detection in beams / Ronald E. Glaser in Journal of engineering mechanics, Vol. 133 N°12 (Decembre 2007)
![]()
[article]
Titre : Markov chain monte carlo-based method for flaw detection in beams Type de document : texte imprimé Auteurs : Ronald E. Glaser, Auteur ; Christopher L. Lee, Auteur ; John J. Nitao, Auteur Année de publication : 2007 Article en page(s) : pp.1258–1267 Note générale : Mécaanique appliquée Langues : Anglais (eng) Mots-clés : Markov chains Monte Carlo method Bayesian analysis Structural models Damage Cantilevers Résumé : A Bayesian inference methodology using a Markov chain Monte Carlo (MCMC) sampling procedure is presented for estimating the parameters of computational structural models. This methodology combines prior information, measured data, and forward models to produce a posterior distribution for the system parameters of structural models that is most consistent with all available data. The MCMC procedure is based upon a Metropolis-Hastings algorithm that is shown to function effectively with noisy data, incomplete data sets, and mismatched computational nodes/measurement points. A series of numerical test cases based upon a cantilever beam is presented. The results demonstrate that the algorithm is able to estimate model parameters utilizing experimental data for the nodal displacements resulting from specified forces. ISSN : 0733-9399 En ligne : http://ascelibrary.org/action/showAbstract?page=1258&volume=133&issue=12&journal [...]
in Journal of engineering mechanics > Vol. 133 N°12 (Decembre 2007) . - pp.1258–1267[article] Markov chain monte carlo-based method for flaw detection in beams [texte imprimé] / Ronald E. Glaser, Auteur ; Christopher L. Lee, Auteur ; John J. Nitao, Auteur . - 2007 . - pp.1258–1267.
Mécaanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 133 N°12 (Decembre 2007) . - pp.1258–1267
Mots-clés : Markov chains Monte Carlo method Bayesian analysis Structural models Damage Cantilevers Résumé : A Bayesian inference methodology using a Markov chain Monte Carlo (MCMC) sampling procedure is presented for estimating the parameters of computational structural models. This methodology combines prior information, measured data, and forward models to produce a posterior distribution for the system parameters of structural models that is most consistent with all available data. The MCMC procedure is based upon a Metropolis-Hastings algorithm that is shown to function effectively with noisy data, incomplete data sets, and mismatched computational nodes/measurement points. A series of numerical test cases based upon a cantilever beam is presented. The results demonstrate that the algorithm is able to estimate model parameters utilizing experimental data for the nodal displacements resulting from specified forces. ISSN : 0733-9399 En ligne : http://ascelibrary.org/action/showAbstract?page=1258&volume=133&issue=12&journal [...] Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Markov chain monte carlo-based method for flaw detection in beams / Roland E. Glasser in Journal of engineering mechanics, Vol. 133 N°11 (Novembre 2007)
![]()
[article]
Titre : Markov chain monte carlo-based method for flaw detection in beams Type de document : texte imprimé Auteurs : Roland E. Glasser, Auteur ; Christopher L. Lee, Auteur ; John J. Nitao, Auteur Année de publication : 2007 Article en page(s) : pp. 1258–1267. Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Markov chains Monte Carlo method Bayesian analysis Structural models Damage Cantilevers Résumé : A Bayesian inference methodology using a Markov chain Monte Carlo (MCMC) sampling procedure is presented for estimating the parameters of computational structural models. This methodology combines prior information, measured data, and forward models to produce a posterior distribution for the system parameters of structural models that is most consistent with all available data. The MCMC procedure is based upon a Metropolis-Hastings algorithm that is shown to function effectively with noisy data, incomplete data sets, and mismatched computational nodes/measurement points. A series of numerical test cases based upon a cantilever beam is presented. The results demonstrate that the algorithm is able to estimate model parameters utilizing experimental data for the nodal displacements resulting from specified forces. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282007%29133%3A12%281 [...]
in Journal of engineering mechanics > Vol. 133 N°11 (Novembre 2007) . - pp. 1258–1267.[article] Markov chain monte carlo-based method for flaw detection in beams [texte imprimé] / Roland E. Glasser, Auteur ; Christopher L. Lee, Auteur ; John J. Nitao, Auteur . - 2007 . - pp. 1258–1267.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 133 N°11 (Novembre 2007) . - pp. 1258–1267.
Mots-clés : Markov chains Monte Carlo method Bayesian analysis Structural models Damage Cantilevers Résumé : A Bayesian inference methodology using a Markov chain Monte Carlo (MCMC) sampling procedure is presented for estimating the parameters of computational structural models. This methodology combines prior information, measured data, and forward models to produce a posterior distribution for the system parameters of structural models that is most consistent with all available data. The MCMC procedure is based upon a Metropolis-Hastings algorithm that is shown to function effectively with noisy data, incomplete data sets, and mismatched computational nodes/measurement points. A series of numerical test cases based upon a cantilever beam is presented. The results demonstrate that the algorithm is able to estimate model parameters utilizing experimental data for the nodal displacements resulting from specified forces. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282007%29133%3A12%281 [...] Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire