Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Philipp Weis
Documents disponibles écrits par cet auteur
Affiner la rechercheFluid-flow patterns at Brothers volcano, southern Kermadec arc / Gillian Gruen in Economic geology, Vol. 107 N° 8 (Décembre 2012)
[article]
in Economic geology > Vol. 107 N° 8 (Décembre 2012) . - pp. 1595-1611
Titre : Fluid-flow patterns at Brothers volcano, southern Kermadec arc : insights from geologically constrained numerical simulations Type de document : texte imprimé Auteurs : Gillian Gruen, Auteur ; Philipp Weis, Auteur ; Thomas Driesner, Auteur Année de publication : 2013 Article en page(s) : pp. 1595-1611 Note générale : economic geology Langues : Anglais (eng) Mots-clés : hydrothermal venting; Brothers volcano Résumé : Numerical, multiphase pure-water simulations were performed to study the first-order geologic and physical parameters controlling the style and distribution of hydrothermal venting at Brothers volcano, southern Kermadec arc, New Zealand. By comparing the results for different permeability scenarios, we can show that the location of venting on the inner slopes of the caldera (e.g., at the NW caldera site) requires the presence of higher permeability faults. Venting at the top of the Upper cone develops naturally by hydrothermal flow in porous rocks above an underlying magma body. However, this magmatic reservoir cannot alone account for present-day hydrothermal venting at the NW caldera site, which implies that a larger magma chamber, which was responsible for caldera collapse, is still active.
Modeled venting temperatures for scenarios with homogeneous host-rock permeability correspond well with formation temperatures determined by sulfate-sulfide mineral pairs from different vent sites at Brothers volcano. Direct measurements of vent fluids at the NW caldera site today, however, show higher temperatures than modeled. This may be due to rapid ascent of hot fluids in individual fractures that are not resolved in the simulations. At the cone sites, measured temperatures are lower than modeled, likely the result of mixing with ambient seawater in near-surface permeable rocks.
The inferred presence of a constant magmatic fluid source underneath the volcanic edifice leads to a more rapid development of the hydrothermal circulation and stabilizes the system at higher temperatures. We suggest that the hydrothermal evolution and fluid-flow patterns at Brothers volcano are controlled by episodes of varying magmatic fluid input into a seawater-dominated convection system.DEWEY : 553 ISSN : 0361-0128 En ligne : http://economicgeology.org/content/107/8/1595.short [article] Fluid-flow patterns at Brothers volcano, southern Kermadec arc : insights from geologically constrained numerical simulations [texte imprimé] / Gillian Gruen, Auteur ; Philipp Weis, Auteur ; Thomas Driesner, Auteur . - 2013 . - pp. 1595-1611.
economic geology
Langues : Anglais (eng)
in Economic geology > Vol. 107 N° 8 (Décembre 2012) . - pp. 1595-1611
Mots-clés : hydrothermal venting; Brothers volcano Résumé : Numerical, multiphase pure-water simulations were performed to study the first-order geologic and physical parameters controlling the style and distribution of hydrothermal venting at Brothers volcano, southern Kermadec arc, New Zealand. By comparing the results for different permeability scenarios, we can show that the location of venting on the inner slopes of the caldera (e.g., at the NW caldera site) requires the presence of higher permeability faults. Venting at the top of the Upper cone develops naturally by hydrothermal flow in porous rocks above an underlying magma body. However, this magmatic reservoir cannot alone account for present-day hydrothermal venting at the NW caldera site, which implies that a larger magma chamber, which was responsible for caldera collapse, is still active.
Modeled venting temperatures for scenarios with homogeneous host-rock permeability correspond well with formation temperatures determined by sulfate-sulfide mineral pairs from different vent sites at Brothers volcano. Direct measurements of vent fluids at the NW caldera site today, however, show higher temperatures than modeled. This may be due to rapid ascent of hot fluids in individual fractures that are not resolved in the simulations. At the cone sites, measured temperatures are lower than modeled, likely the result of mixing with ambient seawater in near-surface permeable rocks.
The inferred presence of a constant magmatic fluid source underneath the volcanic edifice leads to a more rapid development of the hydrothermal circulation and stabilizes the system at higher temperatures. We suggest that the hydrothermal evolution and fluid-flow patterns at Brothers volcano are controlled by episodes of varying magmatic fluid input into a seawater-dominated convection system.DEWEY : 553 ISSN : 0361-0128 En ligne : http://economicgeology.org/content/107/8/1595.short