Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Vijay V. Desai
Documents disponibles écrits par cet auteur
Affiner la recherchePathwise optimization for optimal stopping problems / Vijay V. Desai in Management science, Vol. 58 N° 12 (Décembre 2012)
[article]
in Management science > Vol. 58 N° 12 (Décembre 2012) . - pp. 2292-2308
Titre : Pathwise optimization for optimal stopping problems Type de document : texte imprimé Auteurs : Vijay V. Desai, Auteur ; Vivek F. Farias, Auteur ; Ciamac C. Moallemi, Auteur Année de publication : 2013 Article en page(s) : pp. 2292-2308 Note générale : Management Langues : Anglais (eng) Mots-clés : Dynamic programming Optimal control Optimal stopping American options Bermudian options Résumé : We introduce the pathwise optimization (PO) method, a new convex optimization procedure to produce upper and lower bounds on the optimal value (the “price”) of a high-dimensional optimal stopping problem. The PO method builds on a dual characterization of optimal stopping problems as optimization problems over the space of martingales, which we dub the martingale duality approach. We demonstrate via numerical experiments that the PO method produces upper bounds of a quality comparable with state-of-the-art approaches, but in a fraction of the time required for those approaches. As a by-product, it yields lower bounds (and suboptimal exercise policies) that are substantially superior to those produced by state-of-the-art methods. The PO method thus constitutes a practical and desirable approach to high-dimensional pricing problems. Furthermore, we develop an approximation theory relevant to martingale duality approaches in general and the PO method in particular. Our analysis provides a guarantee on the quality of upper bounds resulting from these approaches and identifies three key determinants of their performance: the quality of an input value function approximation, the square root of the effective time horizon of the problem, and a certain spectral measure of “predictability” of the underlying Markov chain. As a corollary to this analysis we develop approximation guarantees specific to the PO method. Finally, we view the PO method and several approximate dynamic programming methods for high-dimensional pricing problems through a common lens and in doing so show that the PO method dominates those alternatives. ISSN : 0025-1909 En ligne : http://mansci.journal.informs.org/content/58/12/2292.abstract [article] Pathwise optimization for optimal stopping problems [texte imprimé] / Vijay V. Desai, Auteur ; Vivek F. Farias, Auteur ; Ciamac C. Moallemi, Auteur . - 2013 . - pp. 2292-2308.
Management
Langues : Anglais (eng)
in Management science > Vol. 58 N° 12 (Décembre 2012) . - pp. 2292-2308
Mots-clés : Dynamic programming Optimal control Optimal stopping American options Bermudian options Résumé : We introduce the pathwise optimization (PO) method, a new convex optimization procedure to produce upper and lower bounds on the optimal value (the “price”) of a high-dimensional optimal stopping problem. The PO method builds on a dual characterization of optimal stopping problems as optimization problems over the space of martingales, which we dub the martingale duality approach. We demonstrate via numerical experiments that the PO method produces upper bounds of a quality comparable with state-of-the-art approaches, but in a fraction of the time required for those approaches. As a by-product, it yields lower bounds (and suboptimal exercise policies) that are substantially superior to those produced by state-of-the-art methods. The PO method thus constitutes a practical and desirable approach to high-dimensional pricing problems. Furthermore, we develop an approximation theory relevant to martingale duality approaches in general and the PO method in particular. Our analysis provides a guarantee on the quality of upper bounds resulting from these approaches and identifies three key determinants of their performance: the quality of an input value function approximation, the square root of the effective time horizon of the problem, and a certain spectral measure of “predictability” of the underlying Markov chain. As a corollary to this analysis we develop approximation guarantees specific to the PO method. Finally, we view the PO method and several approximate dynamic programming methods for high-dimensional pricing problems through a common lens and in doing so show that the PO method dominates those alternatives. ISSN : 0025-1909 En ligne : http://mansci.journal.informs.org/content/58/12/2292.abstract