Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Emmanuel Guilmineau
Documents disponibles écrits par cet auteur
Affiner la rechercheEffect of side wind on a simplified car model / Emmanuel Guilmineau in Transactions of the ASME . Journal of fluids engineering, Vol. 131 N° 2 (Fevrier 2009)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 2 (Fevrier 2009) . - 12 p.
Titre : Effect of side wind on a simplified car model : experimental and numerical analysis Type de document : texte imprimé Auteurs : Emmanuel Guilmineau, Auteur ; Francis Chometon, Auteur Année de publication : 2009 Article en page(s) : 12 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : physics; force; pressure; flow (dynamics); turbulence; wakes; computational fluid dynamics; numerical analysis; vehicles; vortices; automobiles; computation; Reynolds-averaged Navier–Stokes equations; wind; wind tunnels; yaw Résumé : A prior analysis of the effect of steady cross wind on full size cars or models must be conducted when dealing with transient cross wind gust effects on automobiles. The experimental and numerical tests presented in this paper are performed on the Willy square-back test model. This model is realistic compared with a van-type vehicle; its plane underbody surface is parallel to the ground, and separations are limited to the base for moderated yaw angles. Experiments were carried out in the semi-open test section at the Conservatoire National des Arts et Métiers, and computations were performed at the Ecole Centrale de Nantes (ECN). The ISIS-CFD flow solver, developed by the CFD Department of the Fluid Mechanics Laboratory of ECN, used the incompressible unsteady Reynolds-averaged Navier–Stokes equations. In this paper, the results of experiments obtained at a Reynolds number of 0.9×106 are compared with numerical data at the same Reynolds number for steady flows. In both the experiments and numerical results, the yaw angle varies from 0 deg to 30 deg. The comparison between experimental and numerical results obtained for aerodynamic forces, wall pressures, and total pressure maps shows that the unsteady ISIS-CFD solver correctly reflects the physics of steady three-dimensional separated flows around bluff bodies. This encouraging result allows us to move to a second step dealing with the analysis of unsteady separated flows around the Willy model. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] Effect of side wind on a simplified car model : experimental and numerical analysis [texte imprimé] / Emmanuel Guilmineau, Auteur ; Francis Chometon, Auteur . - 2009 . - 12 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 2 (Fevrier 2009) . - 12 p.
Mots-clés : physics; force; pressure; flow (dynamics); turbulence; wakes; computational fluid dynamics; numerical analysis; vehicles; vortices; automobiles; computation; Reynolds-averaged Navier–Stokes equations; wind; wind tunnels; yaw Résumé : A prior analysis of the effect of steady cross wind on full size cars or models must be conducted when dealing with transient cross wind gust effects on automobiles. The experimental and numerical tests presented in this paper are performed on the Willy square-back test model. This model is realistic compared with a van-type vehicle; its plane underbody surface is parallel to the ground, and separations are limited to the base for moderated yaw angles. Experiments were carried out in the semi-open test section at the Conservatoire National des Arts et Métiers, and computations were performed at the Ecole Centrale de Nantes (ECN). The ISIS-CFD flow solver, developed by the CFD Department of the Fluid Mechanics Laboratory of ECN, used the incompressible unsteady Reynolds-averaged Navier–Stokes equations. In this paper, the results of experiments obtained at a Reynolds number of 0.9×106 are compared with numerical data at the same Reynolds number for steady flows. In both the experiments and numerical results, the yaw angle varies from 0 deg to 30 deg. The comparison between experimental and numerical results obtained for aerodynamic forces, wall pressures, and total pressure maps shows that the unsteady ISIS-CFD solver correctly reflects the physics of steady three-dimensional separated flows around bluff bodies. This encouraging result allows us to move to a second step dealing with the analysis of unsteady separated flows around the Willy model. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...]