Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur P. Taheri
Documents disponibles écrits par cet auteur
Affiner la rechercheSlip-flow pressure drop in microchannels of general cross section / M. Bahrami in Transactions of the ASME . Journal of fluids engineering, Vol. 131 N° 3 (Mars 2009)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 3 (Mars 2009) . - 08 p.
Titre : Slip-flow pressure drop in microchannels of general cross section Type de document : texte imprimé Auteurs : M. Bahrami, Auteur ; A. Tamayol, Auteur ; P. Taheri, Auteur Année de publication : 2009 Article en page(s) : 08 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : compact analytical model; pressure drop Résumé : In the present study, a compact analytical model is developed to determine the pressure drop of fully-developed, incompressible, and constant properties slip-flow through arbitrary cross section microchannels. An averaged first-order Maxwell slip boundary condition is considered. Introducing a relative velocity, the difference between the bulk flow and the boundary velocities, the axial momentum reduces to Poisson’s equation with homogeneous boundary condition. Square root of area is selected as the characteristic length scale. The model of (2006, “ Pressure Drop of Laminar, Fully Developed Flow in Microchannels of Arbitrary Cross Section,” ASME J. Fluids Eng., 128, pp. 1036–1044), which was developed for no-slip boundary condition, is extended to cover the slip-flow regime in this study. The proposed model for pressure drop is a function of geometrical parameters of the channel: cross sectional area, perimeter, polar moment of inertia, and the Knudsen number. The model is successfully validated against existing numerical and experimental data collected from different sources in literature for several shapes, including circular, rectangular, trapezoidal, and double-trapezoidal cross sections and a variety of gases such as nitrogen, argon, and helium. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] Slip-flow pressure drop in microchannels of general cross section [texte imprimé] / M. Bahrami, Auteur ; A. Tamayol, Auteur ; P. Taheri, Auteur . - 2009 . - 08 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 3 (Mars 2009) . - 08 p.
Mots-clés : compact analytical model; pressure drop Résumé : In the present study, a compact analytical model is developed to determine the pressure drop of fully-developed, incompressible, and constant properties slip-flow through arbitrary cross section microchannels. An averaged first-order Maxwell slip boundary condition is considered. Introducing a relative velocity, the difference between the bulk flow and the boundary velocities, the axial momentum reduces to Poisson’s equation with homogeneous boundary condition. Square root of area is selected as the characteristic length scale. The model of (2006, “ Pressure Drop of Laminar, Fully Developed Flow in Microchannels of Arbitrary Cross Section,” ASME J. Fluids Eng., 128, pp. 1036–1044), which was developed for no-slip boundary condition, is extended to cover the slip-flow regime in this study. The proposed model for pressure drop is a function of geometrical parameters of the channel: cross sectional area, perimeter, polar moment of inertia, and the Knudsen number. The model is successfully validated against existing numerical and experimental data collected from different sources in literature for several shapes, including circular, rectangular, trapezoidal, and double-trapezoidal cross sections and a variety of gases such as nitrogen, argon, and helium. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...]