Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Sang W. Joo
Documents disponibles écrits par cet auteur
Affiner la rechercheAnalytical prediction of flow field in magnetohydrodynamic-based microfluidic devices / Hussameddine S. Kabbani in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 9 (Septembre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 9 (Septembre 2008) . - 6 p.
Titre : Analytical prediction of flow field in magnetohydrodynamic-based microfluidic devices Type de document : texte imprimé Auteurs : Hussameddine S. Kabbani, Auteur ; Martin J. Mack, Auteur ; Sang W. Joo, Auteur Année de publication : 2009 Article en page(s) : 6 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Magnetohydrodynamic (MHD) flows; rectangular microchannel driven; velocity; mass flow rate Résumé : A new approximate solution for the velocity profile of steady incompressible magnetohydrodynamic (MHD) flows in a rectangular microchannel driven by the Lorentz force is proposed. Mean velocity and mass flow rate in a channel, subsequently derived, can be used efficiently for many MHD-based microfluidic applications, including the design of a MHD-based microfluidic network without resorting to costly full-scale computational fluid dynamics. The closed-form solutions, provided for both direct-current (dc) and alternating-current (ac) electric and magnetic fields, are in simple forms, without any series or functions to evaluate, and so can be readily used for inverse or control problems associated with MHD-based lab-on-a-chip (LOC) devices. Extensive comparisons with previous analytical, computational, and experimental results are performed, and summarized in the present study. The proposed solutions are shown to agree better with existing experimental and computational reports than previous approximations and are to be used in a broad range of MHD-based LOC applications with both dc and ac fields with required accuracy. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27337 [...] [article] Analytical prediction of flow field in magnetohydrodynamic-based microfluidic devices [texte imprimé] / Hussameddine S. Kabbani, Auteur ; Martin J. Mack, Auteur ; Sang W. Joo, Auteur . - 2009 . - 6 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 9 (Septembre 2008) . - 6 p.
Mots-clés : Magnetohydrodynamic (MHD) flows; rectangular microchannel driven; velocity; mass flow rate Résumé : A new approximate solution for the velocity profile of steady incompressible magnetohydrodynamic (MHD) flows in a rectangular microchannel driven by the Lorentz force is proposed. Mean velocity and mass flow rate in a channel, subsequently derived, can be used efficiently for many MHD-based microfluidic applications, including the design of a MHD-based microfluidic network without resorting to costly full-scale computational fluid dynamics. The closed-form solutions, provided for both direct-current (dc) and alternating-current (ac) electric and magnetic fields, are in simple forms, without any series or functions to evaluate, and so can be readily used for inverse or control problems associated with MHD-based lab-on-a-chip (LOC) devices. Extensive comparisons with previous analytical, computational, and experimental results are performed, and summarized in the present study. The proposed solutions are shown to agree better with existing experimental and computational reports than previous approximations and are to be used in a broad range of MHD-based LOC applications with both dc and ac fields with required accuracy. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27337 [...] Hot-wire anemometry for velocity measurements in nanopowder flows / Sergey P. Bardakhanov in Transactions of the ASME . Journal of fluids engineering, Vol. 131 N° 3 (Mars 2009)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 3 (Mars 2009) . - 04 p.
Titre : Hot-wire anemometry for velocity measurements in nanopowder flows Type de document : texte imprimé Auteurs : Sergey P. Bardakhanov, Auteur ; Sang W. Joo, Auteur Année de publication : 2009 Article en page(s) : 04 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : velocity-field measurements; hot-wire anemometry Résumé : A new technique for velocity-field measurements in fine granular systems is introduced. The hot-wire anemometry, mainly used for gaseous flows, is applied to nanopowders and is found to be a viable experimental method for flow measurements. A generic chute flow of aluminum oxide C and Aerosil A-90 and A-380 powders through a vertical channel is chosen as a test platform, and the results suggest that the hot-wire anemometry is a favorable option for nanopowder measurements. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] Hot-wire anemometry for velocity measurements in nanopowder flows [texte imprimé] / Sergey P. Bardakhanov, Auteur ; Sang W. Joo, Auteur . - 2009 . - 04 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 3 (Mars 2009) . - 04 p.
Mots-clés : velocity-field measurements; hot-wire anemometry Résumé : A new technique for velocity-field measurements in fine granular systems is introduced. The hot-wire anemometry, mainly used for gaseous flows, is applied to nanopowders and is found to be a viable experimental method for flow measurements. A generic chute flow of aluminum oxide C and Aerosil A-90 and A-380 powders through a vertical channel is chosen as a test platform, and the results suggest that the hot-wire anemometry is a favorable option for nanopowder measurements. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...]