Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Yi-Chu Chen
Documents disponibles écrits par cet auteur
Affiner la rechercheTransitional markov chain monte carlo method for bayesian model updating, model class selection, and model averaging / Jianye Ching in Journal of engineering mechanics, Vol. 133 N°7 (Juillet 2007)
[article]
in Journal of engineering mechanics > Vol. 133 N°7 (Juillet 2007) . - pp.816–832.
Titre : Transitional markov chain monte carlo method for bayesian model updating, model class selection, and model averaging Type de document : texte imprimé Auteurs : Jianye Ching, Auteur ; Yi-Chu Chen, Auteur Année de publication : 2007 Article en page(s) : pp.816–832. Note générale : Applied mechanics Langues : Anglais (eng) Mots-clés : Bayesian analysis Simulation Markov chains Monte Carlo method Résumé : This paper presents a newly developed simulation-based approach for Bayesian model updating, model class selection, and model averaging called the transitional Markov chain Monte Carlo (TMCMC) approach. The idea behind TMCMC is to avoid the problem of sampling from difficult target probability density functions (PDFs) but sampling from a series of intermediate PDFs that converge to the target PDF and are easier to sample. The TMCMC approach is motivated by the adaptive Metropolis–Hastings method developed by Beck and Au in 2002 and is based on Markov chain Monte Carlo. It is shown that TMCMC is able to draw samples from some difficult PDFs (e.g., multimodal PDFs, very peaked PDFs, and PDFs with flat manifold). The TMCMC approach can also estimate evidence of the chosen probabilistic model class conditioning on the measured data, a key component for Bayesian model class selection and model averaging. Three examples are used to demonstrate the effectiveness of the TMCMC approach in Bayesian model updating, model class selection, and model averaging. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282007%29133%3A7%2881 [...] [article] Transitional markov chain monte carlo method for bayesian model updating, model class selection, and model averaging [texte imprimé] / Jianye Ching, Auteur ; Yi-Chu Chen, Auteur . - 2007 . - pp.816–832.
Applied mechanics
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 133 N°7 (Juillet 2007) . - pp.816–832.
Mots-clés : Bayesian analysis Simulation Markov chains Monte Carlo method Résumé : This paper presents a newly developed simulation-based approach for Bayesian model updating, model class selection, and model averaging called the transitional Markov chain Monte Carlo (TMCMC) approach. The idea behind TMCMC is to avoid the problem of sampling from difficult target probability density functions (PDFs) but sampling from a series of intermediate PDFs that converge to the target PDF and are easier to sample. The TMCMC approach is motivated by the adaptive Metropolis–Hastings method developed by Beck and Au in 2002 and is based on Markov chain Monte Carlo. It is shown that TMCMC is able to draw samples from some difficult PDFs (e.g., multimodal PDFs, very peaked PDFs, and PDFs with flat manifold). The TMCMC approach can also estimate evidence of the chosen probabilistic model class conditioning on the measured data, a key component for Bayesian model class selection and model averaging. Three examples are used to demonstrate the effectiveness of the TMCMC approach in Bayesian model updating, model class selection, and model averaging. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282007%29133%3A7%2881 [...]