Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Martin Leclerc
Documents disponibles écrits par cet auteur
Affiner la rechercheHydrostatic, temperature, time-displacement model for concrete dams / Pierre Léger in Journal of engineering mechanics, Vol. 133 N°3 (Mars 2007)
[article]
in Journal of engineering mechanics > Vol. 133 N°3 (Mars 2007) . - pp.267–277.
Titre : Hydrostatic, temperature, time-displacement model for concrete dams Type de document : texte imprimé Auteurs : Pierre Léger, Auteur ; Martin Leclerc, Auteur Année de publication : 2007 Article en page(s) : pp.267–277. Note générale : Applied mechanics Langues : Anglais (eng) Mots-clés : Dams concrete Thermal factors Heat transfer Displacement Instrumentation Résumé : This paper presents frequency domain solution algorithms of the one-dimensional transient heat transfer equation that describes temperature variations in arch dam cross sections. Algorithms are developed to compute the temperature T(x,t) , spatial distribution, and time evolution for the “direct” problem, where the temperature variations are specified at the upstream and downstream faces, and for the “inverse” problem, where temperatures have been measured at thermometers located inside instrumented dam sections. The resulting nonlinear temperature field is decomposed in an effective average temperature, Tm(t) , and a linear temperature difference, Tg(x,t) , from which the dam thermal displacement response can be deducted. The proposed frequency domain solution procedures are able to reproduce an arbitrary transient heat response by appending trailing temperatures at the end of thermal signals, thus transforming a periodic heat transfer problem in a transient one. The frequency domain solution procedures are used to develop the HTT (hydrostatic, temperature, time) statistical model to interpret concrete dam-recorded pendulum displacements. In the HTT model, the thermal loads are arbitrary and can contain temperature drift or unusual temperature conditions. The explicit use of Tm(t) and Tg(x,t) in the HTT dam displacement model allows extrapolation for temperature conditions that have never been experienced by the dam before (within the assumption of elastic behavior). The HTT model is applied to the 131-m-high Schlegeis arch dam, and the results are compared with the HST (hydrostatic, seasonal, time) displacement model that is widely used in practice. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282007%29133%3A3%2826 [...] [article] Hydrostatic, temperature, time-displacement model for concrete dams [texte imprimé] / Pierre Léger, Auteur ; Martin Leclerc, Auteur . - 2007 . - pp.267–277.
Applied mechanics
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 133 N°3 (Mars 2007) . - pp.267–277.
Mots-clés : Dams concrete Thermal factors Heat transfer Displacement Instrumentation Résumé : This paper presents frequency domain solution algorithms of the one-dimensional transient heat transfer equation that describes temperature variations in arch dam cross sections. Algorithms are developed to compute the temperature T(x,t) , spatial distribution, and time evolution for the “direct” problem, where the temperature variations are specified at the upstream and downstream faces, and for the “inverse” problem, where temperatures have been measured at thermometers located inside instrumented dam sections. The resulting nonlinear temperature field is decomposed in an effective average temperature, Tm(t) , and a linear temperature difference, Tg(x,t) , from which the dam thermal displacement response can be deducted. The proposed frequency domain solution procedures are able to reproduce an arbitrary transient heat response by appending trailing temperatures at the end of thermal signals, thus transforming a periodic heat transfer problem in a transient one. The frequency domain solution procedures are used to develop the HTT (hydrostatic, temperature, time) statistical model to interpret concrete dam-recorded pendulum displacements. In the HTT model, the thermal loads are arbitrary and can contain temperature drift or unusual temperature conditions. The explicit use of Tm(t) and Tg(x,t) in the HTT dam displacement model allows extrapolation for temperature conditions that have never been experienced by the dam before (within the assumption of elastic behavior). The HTT model is applied to the 131-m-high Schlegeis arch dam, and the results are compared with the HST (hydrostatic, seasonal, time) displacement model that is widely used in practice. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282007%29133%3A3%2826 [...]