Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Katia M. Argüelles Díaz
Documents disponibles écrits par cet auteur
Affiner la rechercheUnsteady flow patterns for a double suction centrifugal pump / José González in Transactions of the ASME . Journal of fluids engineering, Vol. 131 N° 7 (Juillet 2009)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 7 (Juillet 2009) . - 09 p.
Titre : Unsteady flow patterns for a double suction centrifugal pump Type de document : texte imprimé Auteurs : José González, Auteur ; Jesús Manuel Fernández Oro, Auteur ; Katia M. Argüelles Díaz, Auteur Année de publication : 2009 Article en page(s) : 09 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : double suction centrifugal pump; Unsteady Reynolds Averaged Navier–Stokes Equations (URANS) calculation Résumé : The flow in a double suction centrifugal pump is presented in this paper. The static performance of the machine has been obtained in a proper test rig, and the results have been compared with equivalent numerical results from an Unsteady Reynolds Averaged Navier–Stokes Equations (URANS) calculation. In a second step, the numerical results have been exploited to get detailed information about the flow inside the turbomachine. The main goal of the study is, on one hand, the validation of the numerical procedure proposed and, on the other hand, the detailed flow-field analysis for the machine, which points out the possibilities and drawbacks of the pump design. For a double suction machine, the inlet flow is characterized by the existence of a particular geometry that tries to force a uniform flow, at least for the nominal flow rate. On the contrary, at off-design conditions the lack of uniformity produces an unsteady incidence that gives rise to strong hydraulic loading variations. Instantaneous and average pressure fields have been analyzed in this paper to study the evolution of such inlet flow unsteadiness throughout the impeller and the volute. The analysis of both static and dynamic effects on the pump shaft has been carried out from the numerical calculation of the radial forces. The results have shown that the performance of the double suction centrifugal pump is suitable for typical design conditions. The best operation point or nominal flow rate is found to be at φ=0.274, which turns out to produce a specific speed ωS=1.25, well in the range for centrifugal impellers. This operating point is also found to be the one with better efficiency and with better flow characteristics, regarding the axisymmetry of the flow pattern and the fluid forces obtained. However, some particular features produce also interesting results for off-design operating points. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] Unsteady flow patterns for a double suction centrifugal pump [texte imprimé] / José González, Auteur ; Jesús Manuel Fernández Oro, Auteur ; Katia M. Argüelles Díaz, Auteur . - 2009 . - 09 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 7 (Juillet 2009) . - 09 p.
Mots-clés : double suction centrifugal pump; Unsteady Reynolds Averaged Navier–Stokes Equations (URANS) calculation Résumé : The flow in a double suction centrifugal pump is presented in this paper. The static performance of the machine has been obtained in a proper test rig, and the results have been compared with equivalent numerical results from an Unsteady Reynolds Averaged Navier–Stokes Equations (URANS) calculation. In a second step, the numerical results have been exploited to get detailed information about the flow inside the turbomachine. The main goal of the study is, on one hand, the validation of the numerical procedure proposed and, on the other hand, the detailed flow-field analysis for the machine, which points out the possibilities and drawbacks of the pump design. For a double suction machine, the inlet flow is characterized by the existence of a particular geometry that tries to force a uniform flow, at least for the nominal flow rate. On the contrary, at off-design conditions the lack of uniformity produces an unsteady incidence that gives rise to strong hydraulic loading variations. Instantaneous and average pressure fields have been analyzed in this paper to study the evolution of such inlet flow unsteadiness throughout the impeller and the volute. The analysis of both static and dynamic effects on the pump shaft has been carried out from the numerical calculation of the radial forces. The results have shown that the performance of the double suction centrifugal pump is suitable for typical design conditions. The best operation point or nominal flow rate is found to be at φ=0.274, which turns out to produce a specific speed ωS=1.25, well in the range for centrifugal impellers. This operating point is also found to be the one with better efficiency and with better flow characteristics, regarding the axisymmetry of the flow pattern and the fluid forces obtained. However, some particular features produce also interesting results for off-design operating points. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...]