Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jorge Arpe
Documents disponibles écrits par cet auteur
Affiner la rechercheExperimental Evidence of Hydroacoustic Pressure Waves in a Francis Turbine Elbow Draft Tube for Low Discharge Conditions / Jorge Arpe in Transactions of the ASME . Journal of fluids engineering, Vol. 131 N° 8 (Août 2009)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 8 (Août 2009) . - 09 p.
Titre : Experimental Evidence of Hydroacoustic Pressure Waves in a Francis Turbine Elbow Draft Tube for Low Discharge Conditions Type de document : texte imprimé Auteurs : Jorge Arpe, Auteur ; Nicolet, Christophe, Auteur ; François Avellan, Auteur Année de publication : 2009 Article en page(s) : 09 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : three-dimensional unsteady flow; Francis turbine Résumé : The complex three-dimensional unsteady flow developing in the draft tube of a Francis turbine is responsible for pressure fluctuations, which could prevent the whole hydropower plant from operating safely. Indeed, the Francis draft tube is subjected to inlet swirling flow, divergent cross section, and the change of flow direction. As a result, in low discharge off-design operating conditions, a cavitation helical vortex, so-called the vortex rope develops in the draft tube and induces pressure fluctuations in the range of 0.2–0.4 times the runner frequency. This paper presents the extensive unsteady wall pressure measurements performed in the elbow draft tube of a high specific speed Francis turbine scale model at low discharge and at usual plant value of the Thoma cavitation number. The investigation is undertaken for operating conditions corresponding to low discharge, i.e., 0.65–0.85 times the design discharge, which exhibits pressure fluctuations at surprisingly high frequency value, between 2 and 4 times the runner rotation frequency. The pressure fluctuation measurements performed with 104 pressure transducers distributed on the draft tube wall, make apparent in the whole draft tube a fundamental frequency value at 2.5 times the runner frequency. Moreover, the modulations between this frequency with the vortex rope precession frequency are pointed out. The phase shift analysis performed for 2.5 times the runner frequency enables the identification of a pressure wave propagation phenomenon and indicates the location of the corresponding pressure fluctuation excitation source in the elbow; hydroacoustic waves propagate from this source both upstream and downstream the draft tube. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] Experimental Evidence of Hydroacoustic Pressure Waves in a Francis Turbine Elbow Draft Tube for Low Discharge Conditions [texte imprimé] / Jorge Arpe, Auteur ; Nicolet, Christophe, Auteur ; François Avellan, Auteur . - 2009 . - 09 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 8 (Août 2009) . - 09 p.
Mots-clés : three-dimensional unsteady flow; Francis turbine Résumé : The complex three-dimensional unsteady flow developing in the draft tube of a Francis turbine is responsible for pressure fluctuations, which could prevent the whole hydropower plant from operating safely. Indeed, the Francis draft tube is subjected to inlet swirling flow, divergent cross section, and the change of flow direction. As a result, in low discharge off-design operating conditions, a cavitation helical vortex, so-called the vortex rope develops in the draft tube and induces pressure fluctuations in the range of 0.2–0.4 times the runner frequency. This paper presents the extensive unsteady wall pressure measurements performed in the elbow draft tube of a high specific speed Francis turbine scale model at low discharge and at usual plant value of the Thoma cavitation number. The investigation is undertaken for operating conditions corresponding to low discharge, i.e., 0.65–0.85 times the design discharge, which exhibits pressure fluctuations at surprisingly high frequency value, between 2 and 4 times the runner rotation frequency. The pressure fluctuation measurements performed with 104 pressure transducers distributed on the draft tube wall, make apparent in the whole draft tube a fundamental frequency value at 2.5 times the runner frequency. Moreover, the modulations between this frequency with the vortex rope precession frequency are pointed out. The phase shift analysis performed for 2.5 times the runner frequency enables the identification of a pressure wave propagation phenomenon and indicates the location of the corresponding pressure fluctuation excitation source in the elbow; hydroacoustic waves propagate from this source both upstream and downstream the draft tube. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...]