Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur D. G. Talley
Documents disponibles écrits par cet auteur
Affiner la rechercheImpact of orifice length/diameter ratio on 90 deg sharp-edge orifice flow with manifold passage cross flow / W. H. Nurick in Transactions of the ASME . Journal of fluids engineering, Vol. 131 N° 8 (Août 2009)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 8 (Août 2009) . - 10 p.
Titre : Impact of orifice length/diameter ratio on 90 deg sharp-edge orifice flow with manifold passage cross flow Type de document : texte imprimé Auteurs : W. H. Nurick, Auteur ; D. G. Talley, Auteur ; P. A. Strakey, Auteur Année de publication : 2009 Article en page(s) : 10 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : flow (dynamics); cavitation; manifolds; cross-flow; pressure Résumé : The available information describing the various stages of flow conditions that occur as the flow transitions from noncavitation to cavitation (turbulent flow), supercavitation, and finally separation in sharp-edge 90 deg orifices is extensive. However, although sharp-edge orifices in cross flow represent a significant number of injection schemes inherent in many applications, data for this configuration are sparse or nonexistent. This study is intended to increase the database and understanding of the driving variables affecting the flow in all of these conditions. Tests were carried out in a unique test facility capable of achieving large variations in back pressure, flowrate, and operating upstream pressure. The configuration and test ranges of this study includes orifice length/diameter ratios from 2 to 10, upstream pressures from 7.03 kg/cm2 to 105.1 kg/cm2, orifice/manifold area ratio of 0.028 to 0.082, and manifold cross flow velocity of from 410 cm/s to 1830 cm/s. The results for these small area ratio configurations support two different first order models, one for cavitation and the other noncavitation both in turbulent flow. Under cavitation conditions the discharge coefficient is related to the contraction coefficient and the cavitation parameter to the 1/2 power. In the noncavitation flow regime the head loss is related to the loss coefficient and the dynamic pressure at the orifice exit. Both the head loss and contraction coefficient were found to be a strong function of the ratio of manifold/orifice exit velocity. Equations are provided defining the relationships that allow determination of the contraction coefficient, discharge coefficient, and head loss between the contraction coefficient, as well as the loss coefficient and operating conditions. Cavitation parameter values for cavitation inception, cavitation, and supercavitation are also provided. The potential flow theory was shown to predict the contraction coefficient when upstream (manifold to vena-contracta) losses are minimal. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] Impact of orifice length/diameter ratio on 90 deg sharp-edge orifice flow with manifold passage cross flow [texte imprimé] / W. H. Nurick, Auteur ; D. G. Talley, Auteur ; P. A. Strakey, Auteur . - 2009 . - 10 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 8 (Août 2009) . - 10 p.
Mots-clés : flow (dynamics); cavitation; manifolds; cross-flow; pressure Résumé : The available information describing the various stages of flow conditions that occur as the flow transitions from noncavitation to cavitation (turbulent flow), supercavitation, and finally separation in sharp-edge 90 deg orifices is extensive. However, although sharp-edge orifices in cross flow represent a significant number of injection schemes inherent in many applications, data for this configuration are sparse or nonexistent. This study is intended to increase the database and understanding of the driving variables affecting the flow in all of these conditions. Tests were carried out in a unique test facility capable of achieving large variations in back pressure, flowrate, and operating upstream pressure. The configuration and test ranges of this study includes orifice length/diameter ratios from 2 to 10, upstream pressures from 7.03 kg/cm2 to 105.1 kg/cm2, orifice/manifold area ratio of 0.028 to 0.082, and manifold cross flow velocity of from 410 cm/s to 1830 cm/s. The results for these small area ratio configurations support two different first order models, one for cavitation and the other noncavitation both in turbulent flow. Under cavitation conditions the discharge coefficient is related to the contraction coefficient and the cavitation parameter to the 1/2 power. In the noncavitation flow regime the head loss is related to the loss coefficient and the dynamic pressure at the orifice exit. Both the head loss and contraction coefficient were found to be a strong function of the ratio of manifold/orifice exit velocity. Equations are provided defining the relationships that allow determination of the contraction coefficient, discharge coefficient, and head loss between the contraction coefficient, as well as the loss coefficient and operating conditions. Cavitation parameter values for cavitation inception, cavitation, and supercavitation are also provided. The potential flow theory was shown to predict the contraction coefficient when upstream (manifold to vena-contracta) losses are minimal. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] The impact of manifold-to-orifice turning angle on sharp-edge orifice flow characteristics in both cavitation and noncavitation turbulent flow regimes / W. H. Nurick in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 12 (Décembre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 12 (Décembre 2008) . - 10 p.
Titre : The impact of manifold-to-orifice turning angle on sharp-edge orifice flow characteristics in both cavitation and noncavitation turbulent flow regimes Type de document : texte imprimé Auteurs : W. H. Nurick, Auteur ; T. Ohanian, Auteur ; D. G. Talley, Auteur Année de publication : 2009 Article en page(s) : 10 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Flow (Dynamics); turbulence; avitation; manifolds; turning angles; equations; design; orifices Résumé : The approach taken was to analyze the results in a manner consistent with application by design engineers to new and existing applications, while providing some insight into the processes that are occurring. This paper deals with predicting the initiation of cavitation, cavitation impacts on the contraction coefficient (Cc), as well as noncavitation impacts on discharge coefficient (Cd) from L/D of five sharp-edge orifices over a turning angle range between 60 deg and 120 deg. The results show that in the cavitation regime, Cc is controlled by the cavitation parameter (Kcav), where the data follow the 1∕2 power with Kcav, and inception of cavitation occurs at a Kcav of 1.8. In the noncavitation regime for conditions where the cross velocity is 0 the data are consistent with the first order equation relating head loss (HL) to the dynamic pressure where KL is constant and is consistent with in-line orifices. Cross flow has a significant impact on loss coefficient and depends on both the turning angle and manifold inlet to orifice exit velocity ratio. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27349 [...] [article] The impact of manifold-to-orifice turning angle on sharp-edge orifice flow characteristics in both cavitation and noncavitation turbulent flow regimes [texte imprimé] / W. H. Nurick, Auteur ; T. Ohanian, Auteur ; D. G. Talley, Auteur . - 2009 . - 10 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 12 (Décembre 2008) . - 10 p.
Mots-clés : Flow (Dynamics); turbulence; avitation; manifolds; turning angles; equations; design; orifices Résumé : The approach taken was to analyze the results in a manner consistent with application by design engineers to new and existing applications, while providing some insight into the processes that are occurring. This paper deals with predicting the initiation of cavitation, cavitation impacts on the contraction coefficient (Cc), as well as noncavitation impacts on discharge coefficient (Cd) from L/D of five sharp-edge orifices over a turning angle range between 60 deg and 120 deg. The results show that in the cavitation regime, Cc is controlled by the cavitation parameter (Kcav), where the data follow the 1∕2 power with Kcav, and inception of cavitation occurs at a Kcav of 1.8. In the noncavitation regime for conditions where the cross velocity is 0 the data are consistent with the first order equation relating head loss (HL) to the dynamic pressure where KL is constant and is consistent with in-line orifices. Cross flow has a significant impact on loss coefficient and depends on both the turning angle and manifold inlet to orifice exit velocity ratio. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27349 [...]