Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Yuichi Kuya
Documents disponibles écrits par cet auteur
Affiner la rechercheFlow physics of a race car wing with vortex generators in ground effect / Yuichi Kuya in Transactions of the ASME . Journal of fluids engineering, Vol. 131 N° 12 (Décembre 2009)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 12 (Décembre 2009) . - 09 p.
Titre : Flow physics of a race car wing with vortex generators in ground effect Type de document : texte imprimé Auteurs : Yuichi Kuya, Auteur ; Kenji Takeda, Auteur ; Xin Zhang, Auteur Année de publication : 2010 Article en page(s) : 09 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : suction; flow visualization; wakes; vortices; flow (dynamics); generators; wings; separation (technology); flow separation; physics Résumé : This paper experimentally investigates the use of vortex generators for separation control on an inverted wing in ground effect using off-surface flow measurements and surface flow visualization. A typical racing car wing geometry is tested in a rolling road wind tunnel over a wide range of incidences and ride heights. Rectangular vane type of sub-boundary layer and large-scale vortex generators are attached to the suction surface, comprising counter-rotating and corotating configurations. The effects of both device height and spacing are examined. The counter-rotating sub-boundary layer vortex generators and counter-rotating large-scale vortex generators suppress the flow separation at the center of each device pair, while the counter-rotating large-scale vortex generators induce horseshoe vortices between each device where the flow is separated. The corotating sub-boundary layer vortex generators tested here show little evidence of separation control. Increasing the spacing of the counter-rotating sublayer vortex generator induces significant horseshoe vortices, comparable to those seen in the counter-rotating large-scale vortex generator case. Wake surveys show significant spanwise variance behind the wing equipped with the counter-rotating large-scale vortex generators, while the counter-rotating sub-boundary layer vortex generator configuration shows a relatively small variance in the spanwise direction. The flow characteristics revealed here suggest that counter-rotating sub-boundary layer vortex generators can provide effective separation control for race car wings in ground effect. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] Flow physics of a race car wing with vortex generators in ground effect [texte imprimé] / Yuichi Kuya, Auteur ; Kenji Takeda, Auteur ; Xin Zhang, Auteur . - 2010 . - 09 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 12 (Décembre 2009) . - 09 p.
Mots-clés : suction; flow visualization; wakes; vortices; flow (dynamics); generators; wings; separation (technology); flow separation; physics Résumé : This paper experimentally investigates the use of vortex generators for separation control on an inverted wing in ground effect using off-surface flow measurements and surface flow visualization. A typical racing car wing geometry is tested in a rolling road wind tunnel over a wide range of incidences and ride heights. Rectangular vane type of sub-boundary layer and large-scale vortex generators are attached to the suction surface, comprising counter-rotating and corotating configurations. The effects of both device height and spacing are examined. The counter-rotating sub-boundary layer vortex generators and counter-rotating large-scale vortex generators suppress the flow separation at the center of each device pair, while the counter-rotating large-scale vortex generators induce horseshoe vortices between each device where the flow is separated. The corotating sub-boundary layer vortex generators tested here show little evidence of separation control. Increasing the spacing of the counter-rotating sublayer vortex generator induces significant horseshoe vortices, comparable to those seen in the counter-rotating large-scale vortex generator case. Wake surveys show significant spanwise variance behind the wing equipped with the counter-rotating large-scale vortex generators, while the counter-rotating sub-boundary layer vortex generator configuration shows a relatively small variance in the spanwise direction. The flow characteristics revealed here suggest that counter-rotating sub-boundary layer vortex generators can provide effective separation control for race car wings in ground effect. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] Flow separation control on a race car wing with vortex generators in ground effect / Yuichi Kuya in Transactions of the ASME . Journal of fluids engineering, Vol. 131 N° 12 (Décembre 2009)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 12 (Décembre 2009) . - 08 p.
Titre : Flow separation control on a race car wing with vortex generators in ground effect Type de document : texte imprimé Auteurs : Yuichi Kuya, Auteur ; Kenji Takeda, Auteur ; Xin Zhang, Auteur Année de publication : 2010 Article en page(s) : 08 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : flow separation control; vortex generators Résumé : Flow separation control using vortex generators on an inverted wing in ground effect is experimentally investigated, and its performance is characterized in terms of forces and pressure distributions over a range of incidence and ride height. Counter-rotating and co-rotating rectangular-vane type vortex generators are tested on the suction surface of the wing. The effect of device height and spacing is investigated. The counter-rotating sub-boundary layer vortex generators and counter-rotating large-scale vortex generators on the wing deliver 23% and 10% improvements in the maximum downforce, respectively, compared with the clean wing, at an incidence of one degree, and delay the onset of the downforce reduction phenomenon. The counter-rotating sub-boundary layer vortex generators exhibit up to 26% improvement in downforce and 10% improvement in aerodynamic efficiency at low ride heights. Chordwise pressure measurement confirms that both counter-rotating vortex generator configurations suppress flow separation, while the co-rotating vortex generators exhibit negligible effectiveness. This work shows that a use of vortex generators, notably of the counter-rotating sub-boundary layer vortex generator type, can be effective at controlling flow separation, with a resultant improvement in downforce for relatively low drag penalty. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] Flow separation control on a race car wing with vortex generators in ground effect [texte imprimé] / Yuichi Kuya, Auteur ; Kenji Takeda, Auteur ; Xin Zhang, Auteur . - 2010 . - 08 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 131 N° 12 (Décembre 2009) . - 08 p.
Mots-clés : flow separation control; vortex generators Résumé : Flow separation control using vortex generators on an inverted wing in ground effect is experimentally investigated, and its performance is characterized in terms of forces and pressure distributions over a range of incidence and ride height. Counter-rotating and co-rotating rectangular-vane type vortex generators are tested on the suction surface of the wing. The effect of device height and spacing is investigated. The counter-rotating sub-boundary layer vortex generators and counter-rotating large-scale vortex generators on the wing deliver 23% and 10% improvements in the maximum downforce, respectively, compared with the clean wing, at an incidence of one degree, and delay the onset of the downforce reduction phenomenon. The counter-rotating sub-boundary layer vortex generators exhibit up to 26% improvement in downforce and 10% improvement in aerodynamic efficiency at low ride heights. Chordwise pressure measurement confirms that both counter-rotating vortex generator configurations suppress flow separation, while the co-rotating vortex generators exhibit negligible effectiveness. This work shows that a use of vortex generators, notably of the counter-rotating sub-boundary layer vortex generator type, can be effective at controlling flow separation, with a resultant improvement in downforce for relatively low drag penalty. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...]