Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Mohamed Soliman
Documents disponibles écrits par cet auteur
Affiner la rechercheGeneralized probabilistic framework for optimum inspection and maintenance planning / Sunyong Kim in Journal of structural engineering, Vol. 139 N° 3 (Mars 2013)
[article]
in Journal of structural engineering > Vol. 139 N° 3 (Mars 2013) . - pp. 435–447
Titre : Generalized probabilistic framework for optimum inspection and maintenance planning Type de document : texte imprimé Auteurs : Sunyong Kim, Auteur ; Dan M. Frangopol, Auteur ; Mohamed Soliman, Auteur Année de publication : 2013 Article en page(s) : pp. 435–447 Note générale : structural engineering Langues : Anglais (eng) Mots-clés : damage detection; decision making; inspection; maintenance delay; optimization; probability; service life; uncertainty Résumé : This paper proposes a generalized probabilistic framework for optimum inspection and maintenance planning of deteriorating structures. The proposed framework covers (1) the damage occurrence and propagation and service life prediction under uncertainty, (2) the relation between degree of damage and probability of damage detection of an inspection method, and (3) the effects of inspection and maintenance on service life and life-cycle cost. Optimum inspection and maintenance types and times are obtained through an optimization formulation by maximizing the expected service life and minimizing the expected total life-cycle cost consisting of inspection and maintenance costs. The service life, life-cycle cost, and maintenance delay, along with inspection and maintenance actions, are formulated using a decision tree model. The selection of the appropriate maintenance type depends on the degree of damage. The proposed framework is general and can be applied to any types of deteriorating structures or materials. Applications of the proposed framework may include, but are not limited to, bridges, buildings, aircrafts, and naval ships. En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29ST.1943-541X.0000676 [article] Generalized probabilistic framework for optimum inspection and maintenance planning [texte imprimé] / Sunyong Kim, Auteur ; Dan M. Frangopol, Auteur ; Mohamed Soliman, Auteur . - 2013 . - pp. 435–447.
structural engineering
Langues : Anglais (eng)
in Journal of structural engineering > Vol. 139 N° 3 (Mars 2013) . - pp. 435–447
Mots-clés : damage detection; decision making; inspection; maintenance delay; optimization; probability; service life; uncertainty Résumé : This paper proposes a generalized probabilistic framework for optimum inspection and maintenance planning of deteriorating structures. The proposed framework covers (1) the damage occurrence and propagation and service life prediction under uncertainty, (2) the relation between degree of damage and probability of damage detection of an inspection method, and (3) the effects of inspection and maintenance on service life and life-cycle cost. Optimum inspection and maintenance types and times are obtained through an optimization formulation by maximizing the expected service life and minimizing the expected total life-cycle cost consisting of inspection and maintenance costs. The service life, life-cycle cost, and maintenance delay, along with inspection and maintenance actions, are formulated using a decision tree model. The selection of the appropriate maintenance type depends on the degree of damage. The proposed framework is general and can be applied to any types of deteriorating structures or materials. Applications of the proposed framework may include, but are not limited to, bridges, buildings, aircrafts, and naval ships. En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29ST.1943-541X.0000676