Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur H. Porumamilla
Documents disponibles écrits par cet auteur
Affiner la rechercheModeling and verification of an innovative active pneumatic vibration isolation system / H. Porumamilla in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 130 N° 3 (Mai/Juin 2008)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 130 N° 3 (Mai/Juin 2008) . - 12 p.
Titre : Modeling and verification of an innovative active pneumatic vibration isolation system Type de document : texte imprimé Auteurs : H. Porumamilla, Auteur ; A. G. Kelkar, Auteur ; J. M. Vogel, Auteur Année de publication : 2010 Article en page(s) : 12 p. Note générale : dynamic systems Langues : Anglais (eng) Mots-clés : active pneumatic vibration isolation Résumé : This paper presents a novel concept in active pneumatic vibration isolation. The novelty in the concept is in utilizing an air-spring-orifice-accumulator combination to vary the natural frequency as well as inject damping into the system per requirement, thereby eliminating the need for a hydraulic cylinder or a magnetorheological damper. This continuously variable natural frequency and damping (CVNFD) technology is aimed at achieving active vibration isolation. For analysis purposes, a particular application in the form of pneumatic seat suspension for off-road vehicles is chosen. A mathematical model representing the system is derived rigorously from inertial dynamics and first principles in thermodynamics. Empirical corelations are also used to include nonlinearities such as friction that cannot be accounted for in the thermodynamic equations. An exhaustive computational study is undertaken to help understand the physics of the system. The computational study clearly depicts the CVNFD capability of the vibration isolation system. An experimental test rig is built to experimentally validate analytical and simulation modeling of the system. Experimental verification corroborated the variable natural frequency and damping characteristic of the system observed through computational simulations. En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/mobile/article.aspx?article [...] [article] Modeling and verification of an innovative active pneumatic vibration isolation system [texte imprimé] / H. Porumamilla, Auteur ; A. G. Kelkar, Auteur ; J. M. Vogel, Auteur . - 2010 . - 12 p.
dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 130 N° 3 (Mai/Juin 2008) . - 12 p.
Mots-clés : active pneumatic vibration isolation Résumé : This paper presents a novel concept in active pneumatic vibration isolation. The novelty in the concept is in utilizing an air-spring-orifice-accumulator combination to vary the natural frequency as well as inject damping into the system per requirement, thereby eliminating the need for a hydraulic cylinder or a magnetorheological damper. This continuously variable natural frequency and damping (CVNFD) technology is aimed at achieving active vibration isolation. For analysis purposes, a particular application in the form of pneumatic seat suspension for off-road vehicles is chosen. A mathematical model representing the system is derived rigorously from inertial dynamics and first principles in thermodynamics. Empirical corelations are also used to include nonlinearities such as friction that cannot be accounted for in the thermodynamic equations. An exhaustive computational study is undertaken to help understand the physics of the system. The computational study clearly depicts the CVNFD capability of the vibration isolation system. An experimental test rig is built to experimentally validate analytical and simulation modeling of the system. Experimental verification corroborated the variable natural frequency and damping characteristic of the system observed through computational simulations. En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/mobile/article.aspx?article [...]