Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Deqiang Sun
Documents disponibles écrits par cet auteur
Affiner la rechercheEnergy absorption performance of staggered triangular honeycombs under in - plane crushing loadings / Deqiang Sun in Journal of engineering mechanics, Vol. 139 N° 2 (Février 2013)
[article]
in Journal of engineering mechanics > Vol. 139 N° 2 (Février 2013) . - pp.153–166.
Titre : Energy absorption performance of staggered triangular honeycombs under in - plane crushing loadings Type de document : texte imprimé Auteurs : Deqiang Sun, Auteur ; Weihong Zhang, Auteur Année de publication : 2013 Article en page(s) : pp.153–166. Note générale : Applied mechanics Langues : Anglais (eng) Mots-clés : Staggered triangular honeycombs Finite-element analysis Energy absorption per unit volume Minimum dynamic cushioning coefficient Résumé : The finite-element methodology is presented to evaluate the energy absorption performance of staggered triangular honeycombs under in-plane crushing loadings at impact velocities of 50–300 m/s. The minimum dynamic cushioning coefficient is proposed to characterize the maximum energy absorption efficiency of staggered triangular honeycombs. When all configuration parameters are constant, the energy absorption per unit volume is proportional to the square of the impact velocity; for a given impact velocity, the energy absorption per unit volume is related to the ratio of the cell wall thickness to the edge length by a power law and to the expanding angle by complicated analytical equations. The maximum energy absorption efficiency is insensitive to the impact velocity. Only for the smaller ratio of the cell wall thickness to the edge length does the maximum energy absorption efficiency increase with the increasing expanding angle. At a given impact velocity there is a threshold ratio of the cell wall thickness to the edge length. The maximum energy absorption efficiency decreases abruptly when the ratio is larger than the threshold. The threshold ratio is approximately equal to 0.04. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000475 [article] Energy absorption performance of staggered triangular honeycombs under in - plane crushing loadings [texte imprimé] / Deqiang Sun, Auteur ; Weihong Zhang, Auteur . - 2013 . - pp.153–166.
Applied mechanics
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 139 N° 2 (Février 2013) . - pp.153–166.
Mots-clés : Staggered triangular honeycombs Finite-element analysis Energy absorption per unit volume Minimum dynamic cushioning coefficient Résumé : The finite-element methodology is presented to evaluate the energy absorption performance of staggered triangular honeycombs under in-plane crushing loadings at impact velocities of 50–300 m/s. The minimum dynamic cushioning coefficient is proposed to characterize the maximum energy absorption efficiency of staggered triangular honeycombs. When all configuration parameters are constant, the energy absorption per unit volume is proportional to the square of the impact velocity; for a given impact velocity, the energy absorption per unit volume is related to the ratio of the cell wall thickness to the edge length by a power law and to the expanding angle by complicated analytical equations. The maximum energy absorption efficiency is insensitive to the impact velocity. Only for the smaller ratio of the cell wall thickness to the edge length does the maximum energy absorption efficiency increase with the increasing expanding angle. At a given impact velocity there is a threshold ratio of the cell wall thickness to the edge length. The maximum energy absorption efficiency decreases abruptly when the ratio is larger than the threshold. The threshold ratio is approximately equal to 0.04. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000475