Détail de l'auteur
Auteur C. S. Kumar |
Documents disponibles écrits par cet auteur (1)



A new tracking controller design for underwater vehicles using quadratic stabilization / R. Prasanth Kumar in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 130 N°2 (Mars/Avril 2008)
![]()
[article]
Titre : A new tracking controller design for underwater vehicles using quadratic stabilization Type de document : texte imprimé Auteurs : R. Prasanth Kumar, Auteur ; Dasgupta, Anirvan, Auteur ; C. S. Kumar, Auteur Année de publication : 2008 Article en page(s) : 6 p. Note générale : dynamic systems Langues : Anglais (eng) Mots-clés : dynamics (mechanics) control equipment trajectories (physics) algorithms design underwater vehicles equations vehicles Résumé : This paper proposes a new tracking controller for autonomous underwater vehicles (AUVs) using the concept of simultaneous quadratic stabilization. The nonlinear underwater vehicle system is viewed as a set of locally linear time invariant systems obtained by linearizing the system equations on the reference trajectory about some discrete points. A single stabilizing controller is then designed for the set of systems so obtained. However, this controller requires the exact parameters of the system. Since the hydrodynamic parameters of AUVs are generally not known with sufficient accuracy, the proposed controller is used for the known part of the dynamics and an adaptation algorithm is used to estimate the unknown parameters online and compensate for the rest of the plant dynamics. The proposed controller can thus adaptively handle the complete nonlinear uncertain dynamics of the plant. Simulation results are presented and discussed for a typical AUV. En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&is [...]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 130 N°2 (Mars/Avril 2008) . - 6 p.[article] A new tracking controller design for underwater vehicles using quadratic stabilization [texte imprimé] / R. Prasanth Kumar, Auteur ; Dasgupta, Anirvan, Auteur ; C. S. Kumar, Auteur . - 2008 . - 6 p.
dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 130 N°2 (Mars/Avril 2008) . - 6 p.
Mots-clés : dynamics (mechanics) control equipment trajectories (physics) algorithms design underwater vehicles equations vehicles Résumé : This paper proposes a new tracking controller for autonomous underwater vehicles (AUVs) using the concept of simultaneous quadratic stabilization. The nonlinear underwater vehicle system is viewed as a set of locally linear time invariant systems obtained by linearizing the system equations on the reference trajectory about some discrete points. A single stabilizing controller is then designed for the set of systems so obtained. However, this controller requires the exact parameters of the system. Since the hydrodynamic parameters of AUVs are generally not known with sufficient accuracy, the proposed controller is used for the known part of the dynamics and an adaptation algorithm is used to estimate the unknown parameters online and compensate for the rest of the plant dynamics. The proposed controller can thus adaptively handle the complete nonlinear uncertain dynamics of the plant. Simulation results are presented and discussed for a typical AUV. En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&is [...] Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire