Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Ronald R. Chance
Documents disponibles écrits par cet auteur
Affiner la rechercheEnabling low - cost CO2 capture via heat integration / Ryan P. Lively in Industrial & engineering chemistry research, Vol. 49 N° 16 (Août 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 16 (Août 2010) . - pp. 7550–7562
Titre : Enabling low - cost CO2 capture via heat integration Type de document : texte imprimé Auteurs : Ryan P. Lively, Auteur ; Ronald R. Chance, Auteur ; William J. Koros, Auteur Année de publication : 2010 Article en page(s) : pp. 7550–7562 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Heat Integration Résumé : Hollow fiber sorbents in rapid thermal swing mode, packed bed solid sorbents in thermal swing mode, hollow fiber membranes, monoethanolamine-based liquid amines, and chilled ammonia CO2 sorption systems are compared on an energetic basis for CO2 capture from coal-fired power plants. The systems are compared on an intrinsic heat and auxiliary basis both with and without plantwide heat integration efforts. Without heat integration, every technology considered was shown to be highly parasitic, consuming between 1.0 and 4.0 GJ/(ton of CO2 captured) (effectively between 40 and 100% parasitic, depending on plant efficiencies). When heat integration strategies are considered, such as utilizing feedwater preheating heat flows (without disrupting plant operation) and utilizing heats generated during CO2 compression, the overall parasitic nature of the technologies decreases dramatically. Namely, chilled ammonia and zeolite MFI-based fiber sorbents consume approximately 0.07 and 0.13 GJ/(ton of CO2 captured), respectively. The overall energetic analysis strongly suggests that CO2 capture systems must be highly integrated with the plant systems for successful widespread deployment as retrofits to large power plants. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie100806g [article] Enabling low - cost CO2 capture via heat integration [texte imprimé] / Ryan P. Lively, Auteur ; Ronald R. Chance, Auteur ; William J. Koros, Auteur . - 2010 . - pp. 7550–7562.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 16 (Août 2010) . - pp. 7550–7562
Mots-clés : Heat Integration Résumé : Hollow fiber sorbents in rapid thermal swing mode, packed bed solid sorbents in thermal swing mode, hollow fiber membranes, monoethanolamine-based liquid amines, and chilled ammonia CO2 sorption systems are compared on an energetic basis for CO2 capture from coal-fired power plants. The systems are compared on an intrinsic heat and auxiliary basis both with and without plantwide heat integration efforts. Without heat integration, every technology considered was shown to be highly parasitic, consuming between 1.0 and 4.0 GJ/(ton of CO2 captured) (effectively between 40 and 100% parasitic, depending on plant efficiencies). When heat integration strategies are considered, such as utilizing feedwater preheating heat flows (without disrupting plant operation) and utilizing heats generated during CO2 compression, the overall parasitic nature of the technologies decreases dramatically. Namely, chilled ammonia and zeolite MFI-based fiber sorbents consume approximately 0.07 and 0.13 GJ/(ton of CO2 captured), respectively. The overall energetic analysis strongly suggests that CO2 capture systems must be highly integrated with the plant systems for successful widespread deployment as retrofits to large power plants. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie100806g Hollow fiber adsorbents for CO2 removal from flue gas / Ryan P. Lively in Industrial & engineering chemistry research, Vol. 48 N° 15 (Août 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N° 15 (Août 2009) . - pp. 7314–7324
Titre : Hollow fiber adsorbents for CO2 removal from flue gas Type de document : texte imprimé Auteurs : Ryan P. Lively, Auteur ; Ronald R. Chance, Auteur ; B. T. Kelley, Auteur Année de publication : 2009 Article en page(s) : pp. 7314–7324 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Hollow polymeric fibers Sorbent particles Porous fiber CO2 capture Rapid temperature swing adsorption system Résumé : The nation’s pulverized coal infrastructure is aging, and implementation of current retrofit postcombustion capture methods is extremely expensive. This paper describes a technology based on hollow polymeric fibers with sorbent particles embedded in the porous fiber wall to enable postcombustion CO2 capture via a rapid temperature swing adsorption (RTSA) system. The system takes advantage of the hollow fiber morphology by passing cooling water through the bores during sorption to maximize sorption capacities and steam through the bores during desorption to desorb CO2 efficiently. The thin-walled hollow fibers offer the advantage of rapid heat and mass transport. To avoid mass transfer between the core and the fiber sheath, a dense lumen layer is used on the interior of the fiber wall. This system has advantages over competing technologies. Specifically, the fiber sorbent contactor minimizes flue gas pressure drop across the bed, while maximizing sorption efficiencies via rapid thermal cycles and low regenerative thermal requirements. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie9005244 [article] Hollow fiber adsorbents for CO2 removal from flue gas [texte imprimé] / Ryan P. Lively, Auteur ; Ronald R. Chance, Auteur ; B. T. Kelley, Auteur . - 2009 . - pp. 7314–7324.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N° 15 (Août 2009) . - pp. 7314–7324
Mots-clés : Hollow polymeric fibers Sorbent particles Porous fiber CO2 capture Rapid temperature swing adsorption system Résumé : The nation’s pulverized coal infrastructure is aging, and implementation of current retrofit postcombustion capture methods is extremely expensive. This paper describes a technology based on hollow polymeric fibers with sorbent particles embedded in the porous fiber wall to enable postcombustion CO2 capture via a rapid temperature swing adsorption (RTSA) system. The system takes advantage of the hollow fiber morphology by passing cooling water through the bores during sorption to maximize sorption capacities and steam through the bores during desorption to desorb CO2 efficiently. The thin-walled hollow fibers offer the advantage of rapid heat and mass transport. To avoid mass transfer between the core and the fiber sheath, a dense lumen layer is used on the interior of the fiber wall. This system has advantages over competing technologies. Specifically, the fiber sorbent contactor minimizes flue gas pressure drop across the bed, while maximizing sorption efficiencies via rapid thermal cycles and low regenerative thermal requirements. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie9005244