Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jeff Roach
Documents disponibles écrits par cet auteur
Affiner la rechercheInner-loop control for electromechanical (EMA) flight surface actuation systems / Habibi, Saeid in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 130 N°5 (Septembre 2008)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 130 N°5 (Septembre 2008) . - 13 p.
Titre : Inner-loop control for electromechanical (EMA) flight surface actuation systems Type de document : texte imprimé Auteurs : Habibi, Saeid, Auteur ; Jeff Roach, Auteur ; Greg Luecke, Auteur Année de publication : 2008 Article en page(s) : 13 p. Note générale : dynamic systems Langues : Anglais (eng) Mots-clés : control equipment; engines; stress; feedback; stiction; flight; design; signals; transfer functions; frequency response; gears; electric motors Résumé : This manuscript pertains to the application of an inner-loop control strategy to electromechanical flight surface actuation systems. Modular electromechanical actuators (EMAs) are increasingly used in lieu of centralized hydraulics for the control of flight surfaces in the aerospace sector. The presence of what is termed as a dead zone in these actuators significantly affects the maneuverability, stability, and the flight profiles of aircrafts that use this actuation concept. The hypothesis of our research is that flight surface actuation systems may be desensitized to the effects of dead zone by using a control strategy with multiple inner loops. The proposed strategy involves (a) high-gain inner-loop velocity control of the driving motor and (b) inner-loop compensation for the differential velocity between the motor versus the aileron. The above hypothesis is confirmed by theoretical and simulated analyses using the model of an EMA flight surface actuator. Our results indicate that for small input signals, this strategy is very effective and that it can (a) considerably increase the bandwidth and the crossover frequency of the system and (b) considerably improve the time response of the system. Further to this analysis, this manuscript presents guidelines for the design of EMA systems. En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&is [...] [article] Inner-loop control for electromechanical (EMA) flight surface actuation systems [texte imprimé] / Habibi, Saeid, Auteur ; Jeff Roach, Auteur ; Greg Luecke, Auteur . - 2008 . - 13 p.
dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 130 N°5 (Septembre 2008) . - 13 p.
Mots-clés : control equipment; engines; stress; feedback; stiction; flight; design; signals; transfer functions; frequency response; gears; electric motors Résumé : This manuscript pertains to the application of an inner-loop control strategy to electromechanical flight surface actuation systems. Modular electromechanical actuators (EMAs) are increasingly used in lieu of centralized hydraulics for the control of flight surfaces in the aerospace sector. The presence of what is termed as a dead zone in these actuators significantly affects the maneuverability, stability, and the flight profiles of aircrafts that use this actuation concept. The hypothesis of our research is that flight surface actuation systems may be desensitized to the effects of dead zone by using a control strategy with multiple inner loops. The proposed strategy involves (a) high-gain inner-loop velocity control of the driving motor and (b) inner-loop compensation for the differential velocity between the motor versus the aileron. The above hypothesis is confirmed by theoretical and simulated analyses using the model of an EMA flight surface actuator. Our results indicate that for small input signals, this strategy is very effective and that it can (a) considerably increase the bandwidth and the crossover frequency of the system and (b) considerably improve the time response of the system. Further to this analysis, this manuscript presents guidelines for the design of EMA systems. En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&is [...]