Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Po-Huan Chou
Documents disponibles écrits par cet auteur
Affiner la rechercheAdaptive control of two-axis motion control system using interval type-2 fuzzy neural network / Lin, Faa-Jeng in IEEE transactions on industrial electronics, Vol. 56 N°1 (Janvier 2009)
[article]
in IEEE transactions on industrial electronics > Vol. 56 N°1 (Janvier 2009) . - pp. 178 - 193
Titre : Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network Type de document : texte imprimé Auteurs : Lin, Faa-Jeng, Auteur ; Po-Huan Chou, Auteur Année de publication : 2009 Article en page(s) : pp. 178 - 193 Note générale : electronics Langues : Anglais (eng) Mots-clés : Lyapunov methods; adaptive control; angular velocity control; digital control; digital signal processing chips; fuzzy control; machine control; neurocontrollers; permanent magnet motors; robust control; synchronous motors Résumé : An interval type-2 fuzzy neural network (IT2FNN) control system is proposed for the precision control of a two-axis motion control system in this paper. The adopted two-axis motion control system is composed of two permanent-magnet linear synchronous motors. In the proposed IT2FNN control system, an IT2FNN, which combines the merits of an interval type-2 fuzzy logic system and a neural network, is developed to approximate an unknown dynamic function. Moreover, adaptive learning algorithms that can train the parameters of the IT2FNN online are derived using the Lyapunov stability theorem. Furthermore, a robust compensator is proposed to confront the uncertainties, including a minimum reconstructed error, optimal parameter vectors, and higher order terms in Taylor series. To relax the requirement for the value of the lumped uncertainty in the robust controller, an adaptive lumped uncertainty estimation law is also investigated. Last, the proposed control algorithms are implemented in a TMS320C32 digital-signal-processor-based control computer. From the simulated and experimental results, the contour tracking performance of the two-axis motion control system is significantly improved, and the robustness can be obtained as well using the proposed IT2FNN control system. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4675304&sortType%3Das [...] [article] Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network [texte imprimé] / Lin, Faa-Jeng, Auteur ; Po-Huan Chou, Auteur . - 2009 . - pp. 178 - 193.
electronics
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 56 N°1 (Janvier 2009) . - pp. 178 - 193
Mots-clés : Lyapunov methods; adaptive control; angular velocity control; digital control; digital signal processing chips; fuzzy control; machine control; neurocontrollers; permanent magnet motors; robust control; synchronous motors Résumé : An interval type-2 fuzzy neural network (IT2FNN) control system is proposed for the precision control of a two-axis motion control system in this paper. The adopted two-axis motion control system is composed of two permanent-magnet linear synchronous motors. In the proposed IT2FNN control system, an IT2FNN, which combines the merits of an interval type-2 fuzzy logic system and a neural network, is developed to approximate an unknown dynamic function. Moreover, adaptive learning algorithms that can train the parameters of the IT2FNN online are derived using the Lyapunov stability theorem. Furthermore, a robust compensator is proposed to confront the uncertainties, including a minimum reconstructed error, optimal parameter vectors, and higher order terms in Taylor series. To relax the requirement for the value of the lumped uncertainty in the robust controller, an adaptive lumped uncertainty estimation law is also investigated. Last, the proposed control algorithms are implemented in a TMS320C32 digital-signal-processor-based control computer. From the simulated and experimental results, the contour tracking performance of the two-axis motion control system is significantly improved, and the robustness can be obtained as well using the proposed IT2FNN control system. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4675304&sortType%3Das [...]