Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Biswal, B.
Documents disponibles écrits par cet auteur
Affiner la recherchePower quality disturbance classification using fuzzy C-means algorithm and adaptive particle swarm optimization / Biswal, B. in IEEE transactions on industrial electronics, Vol. 56 N°1 (Janvier 2009)
[article]
in IEEE transactions on industrial electronics > Vol. 56 N°1 (Janvier 2009) . - pp. 212 - 220
Titre : Power quality disturbance classification using fuzzy C-means algorithm and adaptive particle swarm optimization Type de document : texte imprimé Auteurs : Biswal, B., Auteur ; Dash, P.K., Auteur ; Panigrahi, K.B., Auteur Année de publication : 2009 Article en page(s) : pp. 212 - 220 Note générale : electronics Langues : Anglais (eng) Mots-clés : feature extraction; fuzzy set theory; genetic algorithms; particle swarm optimisation; pattern classification; pattern clustering; power supply quality Résumé : This paper presents a new approach for the visual localization, detection, and classification of various nonstationary power signals using a variety of windowing techniques. Among the various windows used earlier like sine, cosine, tangent, hyperbolic tangent, Gaussian, bi-Gaussian, and complex, the modified Gaussian window is found to provide excellent normalized frequency contours of the power signal disturbances suitable for accurate detection, localization, and classification. Various nonstationary power signals are processed through the generalized S-transform with modified Gaussian window to generate time-frequency contours for extracting relevant features for pattern classification. The extracted features are clustered using fuzzy C-means algorithm, and finally, the algorithm is extended using either particle swarm optimization or genetic algorithm to refine the cluster centers. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4559369&sortType%3Das [...] [article] Power quality disturbance classification using fuzzy C-means algorithm and adaptive particle swarm optimization [texte imprimé] / Biswal, B., Auteur ; Dash, P.K., Auteur ; Panigrahi, K.B., Auteur . - 2009 . - pp. 212 - 220.
electronics
Langues : Anglais (eng)
in IEEE transactions on industrial electronics > Vol. 56 N°1 (Janvier 2009) . - pp. 212 - 220
Mots-clés : feature extraction; fuzzy set theory; genetic algorithms; particle swarm optimisation; pattern classification; pattern clustering; power supply quality Résumé : This paper presents a new approach for the visual localization, detection, and classification of various nonstationary power signals using a variety of windowing techniques. Among the various windows used earlier like sine, cosine, tangent, hyperbolic tangent, Gaussian, bi-Gaussian, and complex, the modified Gaussian window is found to provide excellent normalized frequency contours of the power signal disturbances suitable for accurate detection, localization, and classification. Various nonstationary power signals are processed through the generalized S-transform with modified Gaussian window to generate time-frequency contours for extracting relevant features for pattern classification. The extracted features are clustered using fuzzy C-means algorithm, and finally, the algorithm is extended using either particle swarm optimization or genetic algorithm to refine the cluster centers. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4559369&sortType%3Das [...]