Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur C. Pirola
Documents disponibles écrits par cet auteur
Affiner la rechercheVegetable oil deacidification by amberlyst / C. Pirola in Industrial & engineering chemistry research, Vol. 49 N° 10 (Mai 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 10 (Mai 2010) . - pp. 4601–4606
Titre : Vegetable oil deacidification by amberlyst : study of the catalyst lifetime and a suitable reactor configuration Type de document : texte imprimé Auteurs : C. Pirola, Auteur ; C. L. Bianchi, Auteur ; D. C. Boffito, Auteur Année de publication : 2010 Article en page(s) : pp. 4601–4606 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Catalyst Résumé : Deacidification of crude vegetable oils containing high amounts of free fatty acids is the first step toward low-cost biodiesel production. In order to lower the acid content, the most popular method is based on an esterification process carried out with methanol and using Amberlysts as solid acid heterogeneous catalysts. This process was deeply investigated in recent years with good results. At the moment, the lifetime of the catalyst is the most crucial issue in industrial applications. With the aim of investigating this aspect, 90 consecutive batch deacidification runs, each lasting 6 h, were conducted using crude palm oil or soybean oil as a feedstock and Amberlyst 46 as a catalyst. At the end of the recycles, a decrease of activity of about 25% was observed, probably ascribed to some fragmentation of the catalyst’s particles, with a loss of active material, caused by the mechanical stress occurring in the batch reactor. The same reaction was also conducted in both continuous and semicontinuous catalytic packed-bed reactors, in order to immobilize the catalyst so as to prevent mechanical stress. A catalytic packed-bed reactor needs to be fed with a homogeneous methanol/vegetable oil emulsion: the results obtained with a traditional mechanical stirring and with an emulsificator were compared. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901980c [article] Vegetable oil deacidification by amberlyst : study of the catalyst lifetime and a suitable reactor configuration [texte imprimé] / C. Pirola, Auteur ; C. L. Bianchi, Auteur ; D. C. Boffito, Auteur . - 2010 . - pp. 4601–4606.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 10 (Mai 2010) . - pp. 4601–4606
Mots-clés : Catalyst Résumé : Deacidification of crude vegetable oils containing high amounts of free fatty acids is the first step toward low-cost biodiesel production. In order to lower the acid content, the most popular method is based on an esterification process carried out with methanol and using Amberlysts as solid acid heterogeneous catalysts. This process was deeply investigated in recent years with good results. At the moment, the lifetime of the catalyst is the most crucial issue in industrial applications. With the aim of investigating this aspect, 90 consecutive batch deacidification runs, each lasting 6 h, were conducted using crude palm oil or soybean oil as a feedstock and Amberlyst 46 as a catalyst. At the end of the recycles, a decrease of activity of about 25% was observed, probably ascribed to some fragmentation of the catalyst’s particles, with a loss of active material, caused by the mechanical stress occurring in the batch reactor. The same reaction was also conducted in both continuous and semicontinuous catalytic packed-bed reactors, in order to immobilize the catalyst so as to prevent mechanical stress. A catalytic packed-bed reactor needs to be fed with a homogeneous methanol/vegetable oil emulsion: the results obtained with a traditional mechanical stirring and with an emulsificator were compared. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901980c