Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Alessandra Mosca
Documents disponibles écrits par cet auteur
Affiner la rechercheComparison of traditional and structured adsorbents for CO2 separation by vacuum - swing dsorption / Fateme Rezaei in Industrial & engineering chemistry research, Vol. 49 N° 10 (Mai 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 10 (Mai 2010) . - pp. 4832–4841
Titre : Comparison of traditional and structured adsorbents for CO2 separation by vacuum - swing dsorption Type de document : texte imprimé Auteurs : Fateme Rezaei, Auteur ; Alessandra Mosca, Auteur ; Paul Webley, Auteur Année de publication : 2010 Article en page(s) : pp. 4832–4841 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Gas separation processes Adsorbents Résumé : The development of structured adsorbents with attractive characteristics is an important step in the improvement of adsorption-based gas-separation processes. The improved features of structured adsorbents include lower energy consumption, higher throughput, and superior recovery and purity of product because of the even flow distribution, very low mass-transfer resistance, and low pressure drop in combination with a reasonable adsorption capacity. This study examines the vacuum-swing adsorption (VSA) CO2 separation performance of structured adsorbents in the form of thin NaX films grown on the walls of ceramic cordierite monoliths, and the results are compared with NaX pellets. Adsorption equilibrium and dynamic properties are explored experimentally. The CO2 breakthrough front for the NaX film grown on the 400 cells/in.2 (cpsi) monolith was close to ideal and indicated that axial dispersion was very small and that the mass-transfer resistance in the film was very low. The breakthrough front for the structured adsorbent with 400 cpsi was sharper than that for the structured adsorbent with 900 cpsi and only shifted to shorter breakthrough times because of the lower amount of zeolite and higher effective diffusivity of the former sample. In addition, the CO2 breakthrough fronts for the 400 and 900 cpsi structured adsorbents were both sharper than the breakthrough front for NaX beads. This indicates that the flow distribution in the structured adsorbents is more even and that the mass-transfer resistance in the film is very low because of the small film thickness and high effective diffusivity for CO2 in the NaX film. Experimental data were used to obtain overall mass-transfer linear-driving-force constants, which were subsequently used in a numerical simulation program to estimate the performance of the adsorbents for CO2/N2 separation in a VSA process. It was found that the recovery of structured adsorbents was superior to that of a packed bed because of the much shorter mass-transfer zone. The purity, on the other hand, was not as high as that obtained with a packed bed because of excessive voidage in the structured adsorbents. Increased cell density or improved zeolite loading of the structured adsorbents would improve the CO2 purity without sacrificing recovery for the structured adsorbents, and this represents a path forward to improved VSA performance for CO2 capture. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie9016545 [article] Comparison of traditional and structured adsorbents for CO2 separation by vacuum - swing dsorption [texte imprimé] / Fateme Rezaei, Auteur ; Alessandra Mosca, Auteur ; Paul Webley, Auteur . - 2010 . - pp. 4832–4841.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 10 (Mai 2010) . - pp. 4832–4841
Mots-clés : Gas separation processes Adsorbents Résumé : The development of structured adsorbents with attractive characteristics is an important step in the improvement of adsorption-based gas-separation processes. The improved features of structured adsorbents include lower energy consumption, higher throughput, and superior recovery and purity of product because of the even flow distribution, very low mass-transfer resistance, and low pressure drop in combination with a reasonable adsorption capacity. This study examines the vacuum-swing adsorption (VSA) CO2 separation performance of structured adsorbents in the form of thin NaX films grown on the walls of ceramic cordierite monoliths, and the results are compared with NaX pellets. Adsorption equilibrium and dynamic properties are explored experimentally. The CO2 breakthrough front for the NaX film grown on the 400 cells/in.2 (cpsi) monolith was close to ideal and indicated that axial dispersion was very small and that the mass-transfer resistance in the film was very low. The breakthrough front for the structured adsorbent with 400 cpsi was sharper than that for the structured adsorbent with 900 cpsi and only shifted to shorter breakthrough times because of the lower amount of zeolite and higher effective diffusivity of the former sample. In addition, the CO2 breakthrough fronts for the 400 and 900 cpsi structured adsorbents were both sharper than the breakthrough front for NaX beads. This indicates that the flow distribution in the structured adsorbents is more even and that the mass-transfer resistance in the film is very low because of the small film thickness and high effective diffusivity for CO2 in the NaX film. Experimental data were used to obtain overall mass-transfer linear-driving-force constants, which were subsequently used in a numerical simulation program to estimate the performance of the adsorbents for CO2/N2 separation in a VSA process. It was found that the recovery of structured adsorbents was superior to that of a packed bed because of the much shorter mass-transfer zone. The purity, on the other hand, was not as high as that obtained with a packed bed because of excessive voidage in the structured adsorbents. Increased cell density or improved zeolite loading of the structured adsorbents would improve the CO2 purity without sacrificing recovery for the structured adsorbents, and this represents a path forward to improved VSA performance for CO2 capture. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie9016545