Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Elgendy, A.S.
Documents disponibles écrits par cet auteur
Affiner la rechercheANN-based optimal energy control of induction motor drive in pumping applications / O. S. Ebrahim in IEEE transactions on energy conversion, Vol. 25, N° 3 (Septembre 2010)
[article]
in IEEE transactions on energy conversion > Vol. 25, N° 3 (Septembre 2010) . - pp. 652 - 660
Titre : ANN-based optimal energy control of induction motor drive in pumping applications Type de document : texte imprimé Auteurs : O. S. Ebrahim, Auteur ; Badr, M.A., Auteur ; Elgendy, A.S., Auteur Année de publication : 2011 Article en page(s) : pp. 652 - 660 Note générale : energy conversion Langues : Anglais (eng) Mots-clés : induction motor drives; machine control; neurocontrollers; optimal control; power control; velocity control; voltage control Résumé : This paper investigates the opportunity for energy saving in a three-phase induction motor (IM) driving pump load and proposes an improved loss model control (LMC). Compared with other power-loss reduction algorithms for IM, the presented one has the advantages of fast and smooth flux adaptation, high accuracy, and versatile implementation. The performance of LMC depends mainly on the accuracy of modeling the motor drive and losses. In this paper, the derived loss model considers the surplus power loss caused by inverter voltage harmonics using closed-form equations and also includes the magnetic saturation. An artificial neural network controller is synthesized and trained offline to determine the optimal flux level that achieves maximum drive efficiency. The drive's voltage and speed control loops are connected via the actual stator frequency, making the scheme comparatively reliable. Simulation and experimental studies are performed on 5.5-kW test motor using the proposed control method. The test results are provided and compared with the fixed flux operation to validate the effectiveness. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5431070&sortType%3Das [...] [article] ANN-based optimal energy control of induction motor drive in pumping applications [texte imprimé] / O. S. Ebrahim, Auteur ; Badr, M.A., Auteur ; Elgendy, A.S., Auteur . - 2011 . - pp. 652 - 660.
energy conversion
Langues : Anglais (eng)
in IEEE transactions on energy conversion > Vol. 25, N° 3 (Septembre 2010) . - pp. 652 - 660
Mots-clés : induction motor drives; machine control; neurocontrollers; optimal control; power control; velocity control; voltage control Résumé : This paper investigates the opportunity for energy saving in a three-phase induction motor (IM) driving pump load and proposes an improved loss model control (LMC). Compared with other power-loss reduction algorithms for IM, the presented one has the advantages of fast and smooth flux adaptation, high accuracy, and versatile implementation. The performance of LMC depends mainly on the accuracy of modeling the motor drive and losses. In this paper, the derived loss model considers the surplus power loss caused by inverter voltage harmonics using closed-form equations and also includes the magnetic saturation. An artificial neural network controller is synthesized and trained offline to determine the optimal flux level that achieves maximum drive efficiency. The drive's voltage and speed control loops are connected via the actual stator frequency, making the scheme comparatively reliable. Simulation and experimental studies are performed on 5.5-kW test motor using the proposed control method. The test results are provided and compared with the fixed flux operation to validate the effectiveness. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5431070&sortType%3Das [...]