Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Watson, S.J.
Documents disponibles écrits par cet auteur
Affiner la rechercheCondition monitoring of the power output of wind turbine generators using wavelets / Watson, S.J. in IEEE transactions on energy conversion, Vol. 25, N° 3 (Septembre 2010)
[article]
in IEEE transactions on energy conversion > Vol. 25, N° 3 (Septembre 2010) . - pp. 715 - 721
Titre : Condition monitoring of the power output of wind turbine generators using wavelets Type de document : texte imprimé Auteurs : Watson, S.J., Auteur ; Xiang, B.J., Auteur ; Wenxian, Yang, Auteur Année de publication : 2011 Article en page(s) : pp. 715 - 721 Note générale : energy conversion Langues : Anglais (eng) Mots-clés : asynchronous generators; condition monitoring; fault diagnosis; power generation faults; turbogenerators; wavelet transforms; wind turbines Résumé : With an increasing number of wind turbines being erected offshore, there is a need for cost-effective, predictive, and proactive maintenance. A large fraction of wind turbine downtime is due to bearing failures, particularly in the generator and gearbox. One way of assessing impending problems is to install vibration sensors in key positions on these subassemblies. Such equipment can be costly and requires sophisticated software for analysis of the data. An alternative approach, which does not require extra sensors, is investigated in this paper. This involves monitoring the power output of a variable-speed wind turbine generator and processing the data using a wavelet in order to extract the strength of particular frequency components, characteristic of faults. This has been done for doubly fed induction generators (DFIGs), commonly used in modern variable-speed wind turbines. The technique is first validated on a test rig under controlled fault conditions and then is applied to two operational wind turbine DFIGs where generator shaft misalignment was detected. For one of these turbines, the technique detected a problem 3 months before a bearing failure was recorded. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5422657&sortType%3Das [...] [article] Condition monitoring of the power output of wind turbine generators using wavelets [texte imprimé] / Watson, S.J., Auteur ; Xiang, B.J., Auteur ; Wenxian, Yang, Auteur . - 2011 . - pp. 715 - 721.
energy conversion
Langues : Anglais (eng)
in IEEE transactions on energy conversion > Vol. 25, N° 3 (Septembre 2010) . - pp. 715 - 721
Mots-clés : asynchronous generators; condition monitoring; fault diagnosis; power generation faults; turbogenerators; wavelet transforms; wind turbines Résumé : With an increasing number of wind turbines being erected offshore, there is a need for cost-effective, predictive, and proactive maintenance. A large fraction of wind turbine downtime is due to bearing failures, particularly in the generator and gearbox. One way of assessing impending problems is to install vibration sensors in key positions on these subassemblies. Such equipment can be costly and requires sophisticated software for analysis of the data. An alternative approach, which does not require extra sensors, is investigated in this paper. This involves monitoring the power output of a variable-speed wind turbine generator and processing the data using a wavelet in order to extract the strength of particular frequency components, characteristic of faults. This has been done for doubly fed induction generators (DFIGs), commonly used in modern variable-speed wind turbines. The technique is first validated on a test rig under controlled fault conditions and then is applied to two operational wind turbine DFIGs where generator shaft misalignment was detected. For one of these turbines, the technique detected a problem 3 months before a bearing failure was recorded. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5422657&sortType%3Das [...]