Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Li-Tao Chen
Documents disponibles écrits par cet auteur
Affiner la rechercheThermodynamics model of predicting gas hydrate in porous media based on reaction−adsorption two-step formation mechanism / Li-Tao Chen in Industrial & engineering chemistry research, Vol. 49 N° 8 (Avril 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 8 (Avril 2010) . - pp. 3936–3943
Titre : Thermodynamics model of predicting gas hydrate in porous media based on reaction−adsorption two-step formation mechanism Type de document : texte imprimé Auteurs : Li-Tao Chen, Auteur ; Chang-Yu Sun, Auteur ; Guang-Jin Chen, Auteur Année de publication : 2010 Article en page(s) : pp. 3936–3943 Note générale : Industrial Chemistry Langues : Anglais (eng) Mots-clés : Thermodynamics Predicting Gas Hydrate Porous Adsorption Résumé : A thermodynamics model is improved to predict the hydrate−water−gas equilibria in micropores based on the reaction−adsorption two-step formation mechanism by considering the effect of capillarity. The interfacial tension values between hydrate and water for different gas species are determined by the Gibbs−Thomson relationship or generalized as a linear function of temperatures. The hydrate phase equilibrium conditions for carbon dioxide, methane, ethane, propane, and (6.7% methane + 2.1% ethane + 91.2% propane) gas mixtures in porous media with different pore diameters predicted by the thermodynamics model developed in this work are equivalent to or superior to those of the traditional van der Waals−Platteeuw type models if the interfacial tension values are fixed. The absolute average deviations for all porous media systems can be decreased to 5.08% after a linear relation of interfacial tension and temperatures are introduced. It was found that the interfacial tension values between hydrate and water are in the magnitude order of propane, ethane, carbon dioxide, and methane, which is related to hydrate structure type and the occupancy of linked cavities for different gas species. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901878p [article] Thermodynamics model of predicting gas hydrate in porous media based on reaction−adsorption two-step formation mechanism [texte imprimé] / Li-Tao Chen, Auteur ; Chang-Yu Sun, Auteur ; Guang-Jin Chen, Auteur . - 2010 . - pp. 3936–3943.
Industrial Chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 8 (Avril 2010) . - pp. 3936–3943
Mots-clés : Thermodynamics Predicting Gas Hydrate Porous Adsorption Résumé : A thermodynamics model is improved to predict the hydrate−water−gas equilibria in micropores based on the reaction−adsorption two-step formation mechanism by considering the effect of capillarity. The interfacial tension values between hydrate and water for different gas species are determined by the Gibbs−Thomson relationship or generalized as a linear function of temperatures. The hydrate phase equilibrium conditions for carbon dioxide, methane, ethane, propane, and (6.7% methane + 2.1% ethane + 91.2% propane) gas mixtures in porous media with different pore diameters predicted by the thermodynamics model developed in this work are equivalent to or superior to those of the traditional van der Waals−Platteeuw type models if the interfacial tension values are fixed. The absolute average deviations for all porous media systems can be decreased to 5.08% after a linear relation of interfacial tension and temperatures are introduced. It was found that the interfacial tension values between hydrate and water are in the magnitude order of propane, ethane, carbon dioxide, and methane, which is related to hydrate structure type and the occupancy of linked cavities for different gas species. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901878p