Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Chun-Yuan Cheng
Documents disponibles écrits par cet auteur
Affiner la rechercheAdaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes / Chun-Yuan Cheng in Industrial & engineering chemistry research, Vol. 49 N° 5 (Mars 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 5 (Mars 2010) . - pp. 2254–2262
Titre : Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes Type de document : texte imprimé Auteurs : Chun-Yuan Cheng, Auteur ; Chun-Chin Hsu, Auteur ; Mu-Chen Chen, Auteur Année de publication : 2010 Article en page(s) : pp. 2254–2262 Note générale : Industrial Chemistry Langues : Anglais (eng) Mots-clés : KPCA; Disturbances of Nonlinear; Multivariate; Monitoring Résumé : The Tennessee Eastman (TE) process, created by Eastman Chemical Company, is a complex nonlinear process. Many previous studies focus on the detectability of monitoring a multivariate process by using TE process as an example. Principal component analysis (PCA) is a widely used dimension-reduction tool for monitoring multivariate linear process. Recently, the kernel principal component analysis (KPCA) has emerged as an effective method to tackling the problem of nonlinear data. Nevertheless, the conventional KPCA used the sum of squares of latest observations as the monitoring statistics and hence failed to detect small disturbance of the process. To enhance the detectability of the KPCA-based monitoring method, an adaptive KPCA-based monitoring statistic is proposed in this paper. The basic idea of the proposed method is first adopting the multivariate exponentially moving average to predict the process mean shifts and then combining the estimated mean shifts with the extracted components by KPCA to construct the adaptive monitoring statistic. The efficiency of the proposed monitoring scheme is implemented in a simulated nonlinear system and in the TE process. The experimental results indicate that the proposed method outperforms the traditional PCA and KPCA monitoring schemes. Note de contenu : Bibliogr. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie900521b [article] Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes [texte imprimé] / Chun-Yuan Cheng, Auteur ; Chun-Chin Hsu, Auteur ; Mu-Chen Chen, Auteur . - 2010 . - pp. 2254–2262.
Industrial Chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 5 (Mars 2010) . - pp. 2254–2262
Mots-clés : KPCA; Disturbances of Nonlinear; Multivariate; Monitoring Résumé : The Tennessee Eastman (TE) process, created by Eastman Chemical Company, is a complex nonlinear process. Many previous studies focus on the detectability of monitoring a multivariate process by using TE process as an example. Principal component analysis (PCA) is a widely used dimension-reduction tool for monitoring multivariate linear process. Recently, the kernel principal component analysis (KPCA) has emerged as an effective method to tackling the problem of nonlinear data. Nevertheless, the conventional KPCA used the sum of squares of latest observations as the monitoring statistics and hence failed to detect small disturbance of the process. To enhance the detectability of the KPCA-based monitoring method, an adaptive KPCA-based monitoring statistic is proposed in this paper. The basic idea of the proposed method is first adopting the multivariate exponentially moving average to predict the process mean shifts and then combining the estimated mean shifts with the extracted components by KPCA to construct the adaptive monitoring statistic. The efficiency of the proposed monitoring scheme is implemented in a simulated nonlinear system and in the TE process. The experimental results indicate that the proposed method outperforms the traditional PCA and KPCA monitoring schemes. Note de contenu : Bibliogr. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie900521b