Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Malik, O. P.
Documents disponibles écrits par cet auteur
Affiner la rechercheDesign of an adaptive PSS based on recurrent adaptive control theory / Peng, Zhao in IEEE transactions on energy conversion, Vol. 24 N° 4 (Décembre 2009)
[article]
in IEEE transactions on energy conversion > Vol. 24 N° 4 (Décembre 2009) . - pp. 884 - 892
Titre : Design of an adaptive PSS based on recurrent adaptive control theory Type de document : texte imprimé Auteurs : Peng, Zhao, Auteur ; Malik, O. P., Auteur Année de publication : 2010 Article en page(s) : pp. 884 - 892 Note générale : energy conversion Langues : Anglais (eng) Mots-clés : Adaptive control; neurocontrollers; power system control; power system stability; recurrent neural nets Résumé : Inspired by observing the similarity between adaptive control systems and recurrent neural networks (RNNs), a new control scheme, the recurrent adaptive control (RAC), is presented in this paper. Back propagation through time (BPTT), a learning algorithm for RNNs, can be exploited in RAC. Application of truncated BPTT to RAC is also discussed. Further, a new control algorithm for RAC, termed recursive gradient (RG), is developed to improve the performance of the original and truncated BPTT algorithms. Effectiveness of the RG control algorithm as a power system stabilizer is demonstrated. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5336285&sortType%3Das [...] [article] Design of an adaptive PSS based on recurrent adaptive control theory [texte imprimé] / Peng, Zhao, Auteur ; Malik, O. P., Auteur . - 2010 . - pp. 884 - 892.
energy conversion
Langues : Anglais (eng)
in IEEE transactions on energy conversion > Vol. 24 N° 4 (Décembre 2009) . - pp. 884 - 892
Mots-clés : Adaptive control; neurocontrollers; power system control; power system stability; recurrent neural nets Résumé : Inspired by observing the similarity between adaptive control systems and recurrent neural networks (RNNs), a new control scheme, the recurrent adaptive control (RAC), is presented in this paper. Back propagation through time (BPTT), a learning algorithm for RNNs, can be exploited in RAC. Application of truncated BPTT to RAC is also discussed. Further, a new control algorithm for RAC, termed recursive gradient (RG), is developed to improve the performance of the original and truncated BPTT algorithms. Effectiveness of the RG control algorithm as a power system stabilizer is demonstrated. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5336285&sortType%3Das [...] Neurofuzzy power system stabilizer / Chaturvedi, D. K. in IEEE transactions on energy conversion, Vol. 23 n°3 (Septembre 2008)
[article]
in IEEE transactions on energy conversion > Vol. 23 n°3 (Septembre 2008) . - pp. 887 - 894
Titre : Neurofuzzy power system stabilizer Type de document : texte imprimé Auteurs : Chaturvedi, D. K., Auteur ; Malik, O. P., Auteur Année de publication : 2008 Article en page(s) : pp. 887 - 894 Note générale : Energy conversion Langues : Anglais (eng) Mots-clés : Control engineering computing; fuzzy control; inference mechanisms; neurocontrollers; power engineering computing; power system control; power system stability Résumé : An adaptive fuzzy logic power system stabilizer (AFPSS) consisting of a generalized neuron (GN)-based predictor and a fuzzy logic controller (FLC) is described. The inference mechanism of the FLC is represented by a rule-base and a database. Two parameters, decided on the basis of the GN-predictor output and the current system conditions, are used to tune the AFPSS. This mechanism of tuning makes the fuzzy logic-based power system stabilizer adaptive to changes in the operating conditions. Therefore, variation in the system response, under a wide range of operating conditions, is less compared to the system response with a fixed-parameter conventional PSS. The performance of the AFPSS has been tested by simulation and experimental studies. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4603061&sortType%3Das [...] [article] Neurofuzzy power system stabilizer [texte imprimé] / Chaturvedi, D. K., Auteur ; Malik, O. P., Auteur . - 2008 . - pp. 887 - 894.
Energy conversion
Langues : Anglais (eng)
in IEEE transactions on energy conversion > Vol. 23 n°3 (Septembre 2008) . - pp. 887 - 894
Mots-clés : Control engineering computing; fuzzy control; inference mechanisms; neurocontrollers; power engineering computing; power system control; power system stability Résumé : An adaptive fuzzy logic power system stabilizer (AFPSS) consisting of a generalized neuron (GN)-based predictor and a fuzzy logic controller (FLC) is described. The inference mechanism of the FLC is represented by a rule-base and a database. Two parameters, decided on the basis of the GN-predictor output and the current system conditions, are used to tune the AFPSS. This mechanism of tuning makes the fuzzy logic-based power system stabilizer adaptive to changes in the operating conditions. Therefore, variation in the system response, under a wide range of operating conditions, is less compared to the system response with a fixed-parameter conventional PSS. The performance of the AFPSS has been tested by simulation and experimental studies. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4603061&sortType%3Das [...] Power system stabilizer design using an online adaptive neurofuzzy controller with adaptive input link weights / Ramirez-Gonzalez, M. in IEEE transactions on energy conversion, Vol. 23 n°3 (Septembre 2008)
[article]
in IEEE transactions on energy conversion > Vol. 23 n°3 (Septembre 2008) . - pp. 914 - 922
Titre : Power system stabilizer design using an online adaptive neurofuzzy controller with adaptive input link weights Type de document : texte imprimé Auteurs : Ramirez-Gonzalez, M., Auteur ; Malik, O. P., Auteur Année de publication : 2008 Article en page(s) : pp. 914 - 922 Note générale : Energy conversion Langues : Anglais (eng) Mots-clés : Adaptive control; fuzzy control; fuzzy set theory; gradient methods; neurocontrollers; power system stability Résumé : A neurofuzzy controller (NFC) with adaptive input link weights (ILWs) and working as an adaptive power system stabilizer is presented. The control structure of the proposed adaptive neurofuzzy power system stabilizers (ANFPSSs) consists of a neuroidentifier to track the dynamic behavior of the plant and an NFC to damp the low-frequency power system oscillations. Usually, the input membership functions (IMFs) and consequent parameters (CPs) are adapted in order to enhance the performance of the NFC. However, the adjustment of IMFs can be realized indirectly by the tuning of ILWs introduced here, which is simpler due to the small number of parameters involved. Therefore, in this paper, ILWs and CPs are updated online by the gradient descent method. Simulation studies over a range of operating conditions and disturbances in a single machine-infinite bus system and a multimachine power system demonstrate the improvement in the dynamic performance of the system with the proposed ANFPSS. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4537513&sortType%3Das [...] [article] Power system stabilizer design using an online adaptive neurofuzzy controller with adaptive input link weights [texte imprimé] / Ramirez-Gonzalez, M., Auteur ; Malik, O. P., Auteur . - 2008 . - pp. 914 - 922.
Energy conversion
Langues : Anglais (eng)
in IEEE transactions on energy conversion > Vol. 23 n°3 (Septembre 2008) . - pp. 914 - 922
Mots-clés : Adaptive control; fuzzy control; fuzzy set theory; gradient methods; neurocontrollers; power system stability Résumé : A neurofuzzy controller (NFC) with adaptive input link weights (ILWs) and working as an adaptive power system stabilizer is presented. The control structure of the proposed adaptive neurofuzzy power system stabilizers (ANFPSSs) consists of a neuroidentifier to track the dynamic behavior of the plant and an NFC to damp the low-frequency power system oscillations. Usually, the input membership functions (IMFs) and consequent parameters (CPs) are adapted in order to enhance the performance of the NFC. However, the adjustment of IMFs can be realized indirectly by the tuning of ILWs introduced here, which is simpler due to the small number of parameters involved. Therefore, in this paper, ILWs and CPs are updated online by the gradient descent method. Simulation studies over a range of operating conditions and disturbances in a single machine-infinite bus system and a multimachine power system demonstrate the improvement in the dynamic performance of the system with the proposed ANFPSS. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4537513&sortType%3Das [...]