Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Buizza, Roberto
Documents disponibles écrits par cet auteur
Affiner la rechercheWind power density forecasting using ensemble predictions and time series models / James W. Taylor in IEEE transactions on energy conversion, Vol. 24 N° 3 (Septembre 2009)
[article]
in IEEE transactions on energy conversion > Vol. 24 N° 3 (Septembre 2009) . - pp. 775 - 782
Titre : Wind power density forecasting using ensemble predictions and time series models Type de document : texte imprimé Auteurs : James W. Taylor, Auteur ; McSharry, Patrick E., Auteur ; Buizza, Roberto, Auteur Année de publication : 2010 Article en page(s) : pp. 775 - 782 Note générale : energy conversion Langues : Anglais (eng) Mots-clés : Time series; wind power Résumé : Wind power is an increasingly used form of renewable energy. The uncertainty in wind generation is very large due to the inherent variability in wind speed, and this needs to be understood by operators of power systems and wind farms. To assist with the management of this risk, this paper investigates methods for predicting the probability density function of generated wind power from one to ten days ahead at five U.K. wind farm locations. These density forecasts provide a description of the expected future value and the associated uncertainty. We construct density forecasts from weather ensemble predictions, which are a relatively new type of weather forecast generated from atmospheric models. We also consider density forecasting from statistical time series models. The best results for wind power density prediction and point forecasting were produced by an approach that involves calibration and smoothing of the ensemble-based wind power density. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5224014&sortType%3Das [...] [article] Wind power density forecasting using ensemble predictions and time series models [texte imprimé] / James W. Taylor, Auteur ; McSharry, Patrick E., Auteur ; Buizza, Roberto, Auteur . - 2010 . - pp. 775 - 782.
energy conversion
Langues : Anglais (eng)
in IEEE transactions on energy conversion > Vol. 24 N° 3 (Septembre 2009) . - pp. 775 - 782
Mots-clés : Time series; wind power Résumé : Wind power is an increasingly used form of renewable energy. The uncertainty in wind generation is very large due to the inherent variability in wind speed, and this needs to be understood by operators of power systems and wind farms. To assist with the management of this risk, this paper investigates methods for predicting the probability density function of generated wind power from one to ten days ahead at five U.K. wind farm locations. These density forecasts provide a description of the expected future value and the associated uncertainty. We construct density forecasts from weather ensemble predictions, which are a relatively new type of weather forecast generated from atmospheric models. We also consider density forecasting from statistical time series models. The best results for wind power density prediction and point forecasting were produced by an approach that involves calibration and smoothing of the ensemble-based wind power density. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5224014&sortType%3Das [...]